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1. Multivariate linear regression

Let (yi, xi1, xi2, . . . , xiK , εi)
n
i=1 be realization from some joint distribution such that

the following holds:

yi = β1xi1 + β2xi2 + · · ·+ βkxiK + εi, for i = 1, . . . , n(1)

Using matrix algebra:

y =

y1...
yn



ε =

ε1...
εn



X =

x11 · · · x1K
...

. . .
...

xn1 · · · xnK



β0 =

β1...
βK


y = Xβ0 + ε
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MECO 7312 Lecture 14: Statistical properties of ordinary least squares

(yi, xi1, xi2, . . . , xiK)ni=1 is observed, but (εi)
n
i=1 is unobserved. The goal is to estimate

β0, which is unknown. The OLS estimator for β0 is β̂OLS = (XTX)−1XTy, which
is derived by assuming XT ε = 0.

What are the statistical properties of OLS estimator? We know from the last lecture
that OLS is unbiased, as summarized in the theorem below.

Theorem 1. Unbiasedness of OLS

1.) Data-generating process is: y = Xβ0 + ε, where X and ε are stochastic and
follow some probability distributions.

2.) The columns of X is linearly independent. In another words, the rank of X
is K in all realizations of X.

3.) Exogeneity (zero conditional mean): E[ε|X] = 0.

(1), (2) and (3) together imply that E[β̂] = β0

Besides unbiasedness, we also want to know the sampling distribution of OLS. For
example, what is the variance of OLS? Is OLS asymptotically Normal? The goal is
to perform statistical inference (hypothesis testing and confidence interval).

2. OLS covariance matrix

What is the sampling distribution of β̂? We must start from the data-generating
process, which induces the sampling distribution. The data generating process is
y = Xβ0 + ε, where (X, ε) follow some probability distributions. Sometimes it is
easier to think of X as fixed and nonstochastic, and only ε is random. For example,
in scientific experiments, we sometimes treat X as being fixed. In either case, all
OLS-related derivations are similar.

Now we define the variance-covariance matrix of β̂ as a K ×K matrix Σ such that
Σii = Var(β̂i) = Cov(β̂i, β̂i), and Σij = Cov(β̂i, β̂j). The variance-covariance matrix

can be written as E[(β̂ − E[β̂])(β̂ − E[β̂])T ] = E[(β̂ − β0)(β̂ − β0)
T ].

(β̂ − E[β̂]) is a K × 1 vector, while (β̂ − E[β̂])T is a 1 ×K vector, the product of
which is a K ×K matrix.

Now we can derive the variance-covariance matrix of the OLS estimator. Recall
that
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β̂ = (XTX)−1XT (Xβ0 + ε)(2)

= β0 + (XTX)−1XTε(3)

β̂ − β0 = (XTX)−1XTε(4)

E[(β̂ − β0)(β̂ − β0)
T ] = E[(XTX)−1XTε((XTX)−1XTε)T ](5)

= E[(XTX)−1XTεεTX(XTX)−1](6)

= E[E[(XTX)−1XTεεTX(XTX)−1|X]](7)

= E[(XTX)−1XT E[εεT |X]X(XTX)−1](8)

We have used the fact that (A−1)T = (AT )−1 for a square invertible matrix A, and
(AB)T = BTAT . Now we need to assume something about E[εεT |X], in particular,
we assume that

E[εεT |X] = σ2
0I(9)

This assumption means: Var[εi] = σ2
0 for all i = 1, . . . , n, and that E[εiεj] = 0 for

all i 6= j. In words, the error term across all observations have the same variance
σ2
0, and the covariance of the error term across different observations is zero. That

the observations are i.i.d. would imply E[εεT |X] = σ2
0I, but i.i.d is a stronger

requirement.

When the error terms have identical variance across observations, we are said to be
imposing the homoskedasticity assumption (as opposed to heteroskedasticity).

E[(β̂ − β0)(β̂ − β0)
T ] = E[(XTX)−1XTσ2

0IX(XTX)−1](10)

= σ2
0 E[(XTX)−1](11)

In the case where X is non-stochastic, then Var(β̂) = σ2
0(XTX)−1. When X is

stochastic, we simply estimate E[(XTX)−1] as (XTX)−1. Alternatively, we are not
interested in the stochastic process governing X, and so we calculate the variance-
covariance matrix conditioning on X. Therefore,

Var(β̂|X) = σ2
0(XTX)−1(12)

The precision of the OLS estimator is defined as the inverse of Var(β̂).
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Check using simulation that the variance of OLS estimators decrease (OLS esti-
mators become more precise) when: (i) sample size n increases, and (ii) when the
collinearity between regressors decreases.

3. Estimating the variance of the error terms

How do we estimate σ2
0? Let’s recall all the assumptions we have imposed so

far:

(i) y = Xβ0 + ε,

(ii) E[ε|X] = 0

(iii) E[εεT |X] = σ2
0I

These assumptions implied that Var(εi) = E[ε2i ] = σ2
0 for i = 1, . . . , n. If εi is i.i.d,

then we can estimate σ2
0 as the sample variance estimator s2 = 1

n

∑n
i=1 ε

2
i . However,

we don’t observe εi. Consider replacing εi with ε̂i. That is, consider the estimator
s2 = 1

n

∑n
i=1 ε̂

2
i , where ε̂ = y −Xβ̂ is the residual.

It turns out that s2 is a biased estimator of σ2
0, but we are not too far off. In par-

ticular, we can show that E[s2] = n−K
n
σ2
0. This is true without the i.i.d assumption

on εi. Therefore, an unbiased estimator of σ0 would be:

σ̂2 =
1

n−K

n∑
i=1

ε̂2i(13)

The factor 1
n−K appears because we cannot simply estimate the true error term εi

with the residual ε̂i. The residual is an underestimate of εi because OLS tries to
minimize the the sum of squared residuals. Therefore, we have to inflate 1

n

∑n
i=1 ε̂

2
i

with the factor n
n−K > 1 to achieve an unbiased estimate. When K is large relative

to n, this inflation factor is large: when we have many regressors, we can fit the
dependent variable very well, leaving very little for the residuals.

Now we use R or Python to check that built-in OLS estimators use exactly the
formula ( 1

n−K
∑n

i=1 ε̂
2
i )(X

TX)−1 to calculate the standard errors of the OLS esti-
mates.

4. Heteroskedasticity-consistent covariance matrix estimator

Recall that the variance-covariance matrix of the OLS estimator β is:

E[(β̂ − β0)(β̂ − β0)
T ] = (XTX)−1XT E[εεT ]X(XTX)−1(14)
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(Either treat X to be fixed, or implicitly condition on X).

To obtain a simplified expression of E[(β̂−β0)(β̂−β0)
T ], we made the homoskedastic

assumption: E[εεT |X] = σ2
0I. Now we want to relax this assumption of constant

variance across observations to allow for the fact that some observations have more
noise than others – Var(εi) differs across i.

When this assumption is violated, we say that the error terms are heteroskedastic,
or there is heteroskedasticity. Heteroskedasticity means:

E[εεT |X] =


σ2
1 0 · · · 0

0 σ2
2 · · · 0

...
...

. . .
...

0 0 · · · σ2
n


Heteroskedasticity does not cause OLS to be biased, but the estimator for the
variance-covariance matrix of OLS would be biased and wrong. Therefore, we still
get the same estimate regardless of whether we assume heteroskedasticity or not,
but our inference (hypothesis test, confidence interval, etc) would be wrong.

Halbert White (1980) proposed a heteroskedastic-consistent estimator of the variance-

covariance matrix. That is, an estimator S2 that converges in probability to E[(β̂−
β0)(β̂ − β0)

T |X] = (XTX)−1XT E[εεT |X]X(XTX)−1, without making the as-
sumption E[εεT |X] = σ2

0I.

The idea is simple, instead of assuming E[εεT |X] = σ2
0I, why not just estimate

E[εεT |X]? Now in the presence of heteroskedasticity, E[ε2i ] = σ2
i for i = 1, . . . , n,

where σ2
i is unknown, how about we estimate E[ε2i ] with ε̂2i ? The White’s heteroskedastic-

consistent estimator of the variance-covariance matrix is:

S2 = (XTX)−1XT Σ̂X(XTX)−1(15)

Where:

Σ̂ =


ε̂21 0 · · · 0
0 ε̂22 · · · 0
...

...
. . .

...
0 0 · · · ε̂2n
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White shows that under some conditions, this is a consistent estimator of the
variance-covariance matrix of OLS estimators. There are other heteroskedastic-
consistent variance-covariance estimator. The one implemented in Equation (15) is
called HC0.1 Stata uses HC1 below, where:

Σ̂ =


( n
n−K )ε̂21 0 · · · 0

0 ( n
n−K )ε̂22 · · · 0

...
...

. . .
...

0 0 · · · ( n
n−K )ε̂2n


The intuition behind this estimator can be seen by recalling the previous section
that E[ 1

n

∑n
i=1 ε̂

2
i ] = n−K

n
σ2
0, and therefore σ2

0 = E[ 1
n

∑n
i=1(

n
n−K )ε̂2i ].

These estimators are consistent under heteroskedasticity, therefore for large n, they
are all asymptotically equivalent. However none of these estimators have any finite-
sample guarantee (unbiasedness).

The Breusch-Pagan test can be used to test for heteroskedasticity. First, we obtain
the residuals from ê = y−Xβ̂. Then we run the auxiliary regression ê2 = Xγ+η.
Under the null hypothesis of homoskedasticity, the test statistic nR2 is asymptot-
ically distributed as χ2

K−1, where R2 is the R-squared from the auxiliary regres-
sion.

4.1. Clustered standard errors

In empirical research, we often hear that “we clustered the standard errors at the
level of counties, states, industries, etc.” This means that the authors are assuming
a block-diagonal structure for E[εεT ].

Observations within the same group or cluster could have correlated error terms,
whereas observations from different groups have uncorrelated error terms.

E[εεT ]ij = E[εiεj] =

{
0 if i and j does not belong to the same cluster

σ2
i,j if i and j belongs to the same cluster

For example, with two groups:

1In the R Markdown that accompanies this lecture, we show how to implement heteroskedastic-
robust standard errors. We verify that the estimator constructed here yields the same results as
those implemented by existing packages.
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E[εεT ] =



σ2
1 σ12 · · · σ1n1 0 0 · · · 0

σ12 σ2
2 · · · σ2n1 0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

σ2
n11

σ2
n12

· · · σ2
n1n1

0 0 · · · 0
0 0 · · · 0 σ2

n1+1 σn1+1,n1+2 · · · σn1+1,n

0 0 · · · 0 σn1+2,n1+1 σ2
n1+2 · · · σn1+2,n

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 σn,n1+1 σn,n1+2 · · · σ2
n


We can then estimate E[εiεj] using ε̂iε̂j obtained from OLS. As with heteroskedas-
ticity, not using clustered standard errors when the DGP has correlated errors will
not lead to biased estimates of OLS, but would rather lead to incorrect inference
and standard errors.

4.2. Serial correlation

In the presence of serial correlation, the error terms are correlated across observa-
tions, i.e. E[εiεj] = Cov(εi, εj) 6= 0. The off-diagonals of E[εεT ] are non-zero. This
is quite common in time-series (but not in cross-sectional data).

Serial correlation does not affect the unbiasedness of OLS estimators. Similar to
heteroskedasticity, serial correlation results in incorrect confidence intervals and hy-
pothesis tests.

Serial correlation is usually corrected by assuming that the serial correlation follows
a specific form: εt = ρεt−1 + ut. This is known as the AutoRegressive(1) errors. We
can test for the presence of this kind of serial correlation using the Durbin-Watson
test. Correcting for serial correlation involves differencing: we regress the difference
yt−ρyt−1 on the difference xt−ρxt−1. The parameter ρ can be estimated consistently
using OLS residuals, by regressing ε̂t on ε̂t−1.

5. Hypothesis testing and confidence interval involving OLS estimators

Suppose that y = Xβ0 + u. Assume the following: (1) Exogeneity, E[u|X] = 0,
(2) No perfect multicollinearity, (XTX)−1 exists, (3) Homoskedastic and no serial
correlation, E[uuT ] = σ2

0I, (4) Normality, u|X ∼ N (0, σ2
0I).

These assumptions are collectively called the Classical Linear Regression Model.

Then the OLS estimator β̂ satisfies:

β̂|X ∼ N (β0, σ
2
0(XTX)−1)(16)
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This result can be derived by using the fact that a linear combination of Normal
random variables is a Normal random variable, and that OLS takes linear combi-
nation of the Normal error terms.2 Specifically if u ∼ N (µ,Σ), then A + Bu ∼
N (A+Bµ,BΣBT ).

Therefore, to construct hypothesis tests and confidence intervals for OLS estimates,
we can simply applied what we have learned in the last few classes here. Suppose
we want to test whether one of the coefficients is zero, i.e. H0 : β0j = 0 versus
H1 : β0j 6= 0. Under the null, we have an estimator that is Normally distributed

as β̂j ∼ N (0, σ2
0(XTX)−1

jj ). If we know σ2
0, then a t-test statistic

β̂j√
σ2
0(X

TX)−1
jj

has

a N (0, 1) under the null. If we had to estimate σ2
0, then it turns out that, our

estimator σ̂2 = 1
n−K

∑n
i=1 ε̂

2
i has a Chi-squared distribution, and therefore under the

null,
β̂j√

σ̂2(XTX)−1
jj

has a Student t’s distribution with n−K degrees of freedom.3

If we are unwilling to assume Normal error terms, then there are two alternative
approaches: (1) bootstrapping, (2) asymptotics. Asymptotic sampling distribution.

Under the assumption that XTX
n
→p Q as n → ∞, where Q is a positive definite

matrix,

√
n(β̂ − β0)

d−→ N
(
0, σ2

0Q
−1
)

(17)

As such, the sampling distribution of β̂ for large n can be approximated as:

β̂ ∼ N (β0, σ
2
0(XTX)−1)(18)

6. Summary

In the companion Python notebook, we can run Monte Carlo simulation of a linear
regression DGP to see the following point:

(i) Exogeneity alone guarantees unbiasedness.

(ii) Heteroskedasticity and serial correlation causes incorrect statistical inference
(wrong formula for calculating the variance-covariance matrix of OLS esti-
mator).

(iii) Multicollinearity increases the variance of OLS.

2β̂ = (XTX)−1XT (Xβ0 + ε) = β0 + (XTX)−1XT ε
3Recall that if Z ∼ N (0, 1) and if S2 ∼ χ2

d, then
Z√
S2/d

has a Student’s t distribution with d

degrees of freedom.
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(iv) Under-specification (omission of relevant variables) causes bias since the ex-
ogeneity condition is violated. However, over-specification (inclusion of irrel-
evant variables) does not cause bias, but over-specification increases the vari-
ance of OLS. Specifically, over-specification means the true data-generating
process is y = Xβ + u, but we estimate y = Xβ +Zα+ ε. It is straight-
forward to see why OLS is still unbiased.
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