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1. Introduction

Since the seminal work of McFadden (1978, 1981, 1984), discrete choice modeling based on

the random utility framework has been at the core of modern empirical research in many

areas of economics, including labor, public finance, industrial organization, and health

economics. Many applications of discrete choice models utilize strong parametric assump-

tions (such as probit or logit), and hence are not robust to mis-specification. Moreover,

the parametric assumptions can lead to unrealistic substitution patterns in the subsequent

counterfactual analysis. There is now a growing literature on semiparametric estimation

of discrete choice models1 aiming to resolve the robustness issue in estimation.

Our contribution is to address the problem of counterfactual evaluations in semiparametric

discrete-choice models. We show how to obtain counterfactual choice probabilities or

market shares in these models even if the error distribution is not specified. To the best

of our knowledge, this is the first paper to address the estimation of counterfactuals in

a semiparametric multinomial choice model. In the case of semiparametric binary choice

models, Hausman et al. (1998) propose an approach based on isotonic regression, which

can be used to construct counterfactual choice probabilities without knowledge of the

distribution of the random error terms. This idea, however, only works the binary case. We

provide an approach which works for both multinomial and binary choice settings.2

Counterfactual evaluations is often the primary goal in industrial organization and mar-

keting, such as predicting the market shares under the new pricing scheme, or conducting

merger simulations. Despite the potential pitfall of imposing strong assumptions on sub-

stitution patterns, parametric models such as mixed logit or probit remain the dominating

approach for practitioners3 because counterfactuals can be easily obtained via simulation.

The applicability of semiparametric estimators, by contrast, is largely limited by the ab-

sence of methods for counterfactual evaluations.

In this paper, we propose using cyclic monotonicity, a cross-market restriction on market-

level data derived from discrete-choice theory, to bound the counterfactual market shares

in a semiparametric multinomial choice framework. We do not impose a functional form

for the probability distribution of the utility shocks, and hence the counterfactual market

1Examples include Manski (1975), Han (1987), among many others.
2Recently, Allen and Rehbeck (2016) study the nonparametric identification of counterfactuals in a

class of perturbed utility models, which includes random utility multinomial choice models.
3see, for instance, Train (2003), Ackerberg et al. (2007), Allenby and Rossi (2005)
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shares cannot be obtained even via simulations. Since this approach is semiparametric,

it accommodates rich substitution patterns among alternatives. Such generality comes at

the cost of losing point identification in general. We also show that our construction of

counterfactual bounds is a tractable Linear Programming (LP) formulation.

In the next section we lay out the assumptions and key results on cyclic monotonicity.

In section 3 we discuss how to construct bounds for counterfactual market shares, the

computational issue, as well as the economic meaning of cyclic monotonicity. In section 4

we show that bound is very informative using a Monte Carlo experiment. In section 5 we

show our method can produce very different substitution patterns using actual data.

2. Setup

There areM = {1, . . . ,M}markets. In each market, there are J = {1, . . . , J} alternatives

or products. The latent indirect utility that a consumer i derives from product j at market

m is given by Um
ij = Xm

j β + εmij , where Xm
j is a 1× b vector of observed product-specific

attributes, β is a b× 1 vector of unknown parameters, and εmi = (εmi1, . . . , ε
m
iJ)′ is a vector

of latent utility shocks. Further, let the market share of product j in market m be

smj = Pr(Xm
j β + εmij ≥ maxk 6=j{Xm

k β + εmik}). The model is semiparametric as we do not

specify the distribution of the utility shocks εmi . Similar to Berry (1994), we denote the

mean utility as δmj ≡Xm
j β.

The basic idea is, under the assumption that shocks across individuals and markets are

identical and independently distributed (Assumption 1), the mean utilities and the ob-

served market shares must satisfy a set of inequalities (Proposition 1). To conduct

a counterfactual exercise, suppose then the counterfactual market is characterized by

X̃j , j = 1, . . . , J . Its mean utility vector can be obtained by X̃jβ̂. We then use the afore-

mentioned cross-market restrictions to infer the set of counterfactual market shares that

are consistent with (i) all the mean utilities, and (ii) all the observed market shares.

We now formally state Assumption 1 and Proposition 1 which serve as the backbone of

our counterfactual procedure.

Assumption 1. The vector of utility shocks εmi is distributed identically and indepen-

dently across individual i and market m = 1, . . . ,M , with the joint distribution F . Fur-

ther, F does not depend on (Xm
j )j=1,...,J , that is, Xm

j and εmi are independent.
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Our assumption allows the utility shocks to follow an unknown joint distribution that can

be arbitrarily correlated among different products j. This accommodates many discrete-

choice demand model specifications in the literature, including multinomial logit, nested

logit (Goldberg (1995)), cross-nested logit (Bresnahan et al. (1997)), and multinomial

probit (Goolsbee and Petrin (2004)).4

The key restriction we use for constructing counterfactual market shares is the property

of cyclic monotonicity, which we define next. Let sm be the vector of market shares

evaluated at the mean utilities δm. That is, smj = Pr(δmj + εmij ≥ maxk 6=j{δmk + εmik}), and

sm = (sm1 , . . . , s
m
J ).

Definition 1 (Cyclic Monotonicity): Define a cycle of length K as a permutation of

K − 1 distinct elements from {1, 2, . . . ,M}. Denote a generic cycle of length K by

(l1, l2, . . . , lK , lK+1) with lK+1 = l1. The market shares sm and mean utilities δm satisfy

cyclic monotonicity if the following inequality (1) holds for all possible cycles of length K

and for all K ≥ 2.

K∑
k=1

(δlk+1 − δlk) · slk ≤ 0(1)

Cyclic monotonicity is a defining property of the gradients of vector-valued convex func-

tions, analogous to how monotonicity is a property of the derivatives of scalar-valued con-

vex functions. We exploit cyclic monotonicity to construct counterfactual market shares

using the next proposition.

Proposition 1. Under Assumption 1, the market shares sm and mean utilities δm for

all markets m = 1, . . . ,M satisfy cyclic monotonicity.

Proof. Proposition 1 arises from the convexity properties of the social surplus function (or

the expected indirect utility) of the discrete choice problem (McFadden (1978, 1981)):5

G(δ) = EF

[
max

j∈{1,...,J}
(Xjβ + εij)

∣∣∣Xβ = δ

]
,

4However, the framework does not apply to random-coefficient logit models of demand (Berry et al.

(1995)).
5See Fosgerau and De Palma (2015), Shi et al. (2016) and Chiong and Shum (2016) for full details
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where Xβ = (X1β, . . . ,XJβ), and δ = (δ1, . . . , δJ). Under Assumption 1 we have:

G(δ) = EF

[
max

j∈{1,...,J}
(δj + εij)

]
,

which is a convex function of the vector of mean utilities δ. The social surplus function

has an important property. Define the function s : U ⊂ RJ → ∆J as the mapping from

mean utilities to market shares, where the j-th component of s(δ) is sj(δ) = Pr(δj +

εmij ≥ maxk 6=j{δk + εmik}), and U is a convex super-set of the unknown true mean utilities

{δ1, . . . , δm}. By the Williams-Daly-Zachary Theorem6, s(δ) lies in the subgradient of G
evaluated at δ, for all δ ∈ U . That is,

(2) s(δ) ∈ ∂G(δ).

By a well-known result in convex analysis (Rockafellar (1970)), the subgradient of a convex

function satisfies cyclic monotonicity. More precisely, because the mapping s is a gradient

function of a convex function, it follows that for every cycle x0,x1, . . . ,xn,xn+1 = x0 in

U , we have s(x0) · (x1 − x0) + s(x1) · (x2 − x1) + · · · + s(xn) · (xn+1 − xn) ≤ 0.7 In

particular, we can take the cycle in U consisting of the unknown mean utilities. This

proves Proposition 1. �

For binary-choice models, semiparametric estimation using the maximum score or maxi-

mum rank correlation approaches (Han (1987); Manski (1975)) exploits the feature that

the (scalar-valued) choice probability function s(δ) is increasing in the mean utility δ.

Cyclic monotonicity is a natural extension of this insight into multinomial-choice models,

where cyclic monotonicity formalizes the idea that s(δ) is monotonic in δ in a vector-

sense.

6See Rust (1994). Chiong et al. (2016) generalize it to the case when the social surplus function may

be non-differentiable, corresponding to cases where the utility shocks ε have bounded support or follow a

discrete distribution.
7See Rockafellar (1970, Theorem 23.5); Villani (2003). Conversely, any function that satisfies cyclic

monotonicity must be a subgradient of some convex function.
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3. Counterfactuals Implied by Cyclic Monotonicity

In this section, we show how to compute the counterfactual market shares using the cyclic

monotonicity restriction (Proposition 1). We assume that the first-step estimation of

the parameters β has been carried out by some semiparametric estimator such as Fox

(2007) or Shi et al. (2016).8 The researchers observe s =
(
s1, . . . , sM

)
vectors of market

shares in markets m = 1, . . . ,M , and the corresponding mean utilities δ =
(
δ1, . . . , δM

)
with δmj = Xm

j β. The counterfactual market, index by market M + 1, is characterized

by its mean utility vector δM+1. The corresponding market share vector is denoted by

sM+1. Since δM+1 is known by construction, the remaining problem is to determine sM+1.

First, market shares must be non-negative and must add up to one, we have the following

constraints:

J∑
j=1

sM+1
j = 1

sM+1
j ≥ 0 ∀j

Second, the counterfactual market (δM+1, sM+1) must satisfy the cyclic monotonicity for

any cycle containing M + 1. That is, given any cycle of length K, (l1, l2, . . . , lK , l1), such

that lK = M + 1 corresponds to the counterfactual market, cyclic monotonicity implies

that

(3)

K∑
k=1

(δlk+1 − δlk) · slk ≤ 0.

Notice that where the cycle starts and ends is irrelevant to the definition of cyclic mono-

tonicity as only the “sum” matters. For example, the cycle (1, 2, 3, 1) is equivalent to

(2, 3, 1, 2) and (3, 1, 2, 3) when computing (3). Therefore, without loss of generality one

can always put the counterfactual market at the end of the cycle.

8While Fox’s (2007) estimator is based on the rank-order property, which involves utility comparisons

amongst all pairs of options in the choice set, it turns out that the bounds on market shares implied by the

rank-order property have undesirable properties for the evaluation of counterfactual choice probabilities,

which we describe in Appendix A. Because of that we focus on the implications of cyclic monotonicity in

this paper.
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3.1. Computing Bounds for Market Shares

Given the constraints in the previous section, the upper bound for the counterfactual

market share of the i-th good is given by the linear programming (LP) problem:

max sM+1
i(4)

s.t.

J∑
j=1

sM+1
j = 1

K∑
k=1

(δlk+1 − δlk) · slk ≤ 0; lK = M + 1; 2 ≤ K ≤M

sM+1
j ≥ 0 ∀j

Similarly, the lower bound can be found by changing maximization to minimization. Sev-

eral policy relevant counterfactuals can be computed by choosing a suitable objective

function and mean utilities δM+1. As examples, the elasticity of substitution matrix is

often a key input for merger simulations (Nevo (2000)); counterfactual market shares

resulting from large price changes are also used to evaluate the welfare benefits of new

product introductions (Hausman (1996), Petrin (2002)). For evaluating the effects of price

changes, we proceed by introducing a counterfactual market, which we label M +1, which

is identical to the benchmark market m, except that the price of product i in market

M + 1 is higher than pmi . By solving (4) for all j ∈ J one is able to bound the effect of

the price increase pM+1
i − pmi on market shares of product j.

More complicated counterfactuals are possible. For example, a multi-product firm may

want to predict the maximum total share (sM+1
1 +sM+1

2 ) or revenue (pM+1
1 ·sM+1

1 +pM+1
2 ·

sM+1
2 ) under the new pricing scheme (pM+1

1 , pM+1
2 ), holding other things equal. This can

be done by choosing a benchmark market first, and change the objective function.

3.2. Linear Programming Formulation

At the first glance the LP problem of (4) appears to be computationally intensive, because

even considering cycles up to length 3 would result in M +
(
M
2

)
× 2! constraints, which

is proportional to M2. To better understand the complexity of the LP problem, we first

need to express the constraints associated with cyclic monotonicity in terms of
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A · (sM+1)′ ≤ b(5)

A and b will be referred as the constraint matrix and the right-hand side vector, and

(sM+1)′ are the unknown parameters (the vector of counterfactual market shares) to be

determined.9 The dimension of b, and the number of rows in A, is equal to the number

of cyclic monotonicity inequalities, i.e. the number of possible cycles. For a given cycle

(l1, l2, . . . ,M + 1, l1), we will next derive the corresponding row and entry in A and b

corresponding to this cycle. Now consider the following K × J matrices D and S stacked

by the relevant utility and market share row vectors:

D =



δl2

δl3

...

δM+1

δl1


−



δl1

δl2

...

δlK−1

δM+1


=

[
D1

δl1 − δM+1

]

S =



sl1

sl2

...

slK−1

sM+1


=

[
S1

sM+1

]
.

The cyclic monotonicity inequality corresponding to this cycle (see Equation (3)) can be

written as

(6) (δl1 − δM+1) · (sM+1)
′ ≤ −1

′
(D1 ◦ S1)1,

where 1 is a (K− 1)× 1 vector of 1s and ◦ is the Hadamard product. For this cycle, then,

the corresponding row of A and entry in b is given by (6).

It turns out that, in this way, by rewriting the cyclic monotonicity inequalities for each

cycle, we can show that the number of effective constraints in the LP problem is much

smaller than the number of cycles. The following Lemma shows that our counterfactual

9For notational convenience, in this section, we will take the vectors of mean utilities and market shares

(δi and si) as 1 × J row vectors.



COUNTERFACTUAL ESTIMATION IN SEMIPARAMETRIC DISCRETE-CHOICE MODELS 9

problem can always be formulated as a LP problem with at most M distinct constraint

inequalities, where M is the number of markets (the LP problem also includes J non-

negativity constraints).

Lemma 1. Expressing the LP constraints imposed by cyclic monotonicity in the form of

(5), there are at most M distinct rows in A.

Proof. From (6), the constraint coefficient always takes the form δi − δM+1, where i ∈
{1, . . . ,M}. Since there are M markets, there are at most M distinct constraint coeffi-

cients.

�

Lemma 1 implies that our counterfactual procedure is a computationally easy LP prob-

lem.10 Although the number of constraints appears to increase exponentially as the num-

ber of markets increases, Lemma 1 implies that most of them are parallel to each other,

which are then easily eliminated in a pre-solved step.

3.3. Gross Substitution

In this section, we analytically demonstrate a simple counterfactual using the LP formu-

lation above. Suppose we increase the price of product j in market m, our counterfactual

framework shows that its market share weakly decreases. In another words, there is at

least one product i ∈ J \{j} such that products i, j are weakly substitute.

Proposition 2. Suppose the regressors contain price for each product pj, and the price

coefficient βp < 0 (normal goods). Consider a counterfactual market M + 1, which is

identical to the benchmark market m, except that δM+1
j differs from δmj due to the price

change of product j. Cyclic monotonicity implies that (pM+1
j − pmj )(sM+1

j − smj ) ≤ 0.

Since the market share of product j weakly decreases when its price increases, there must

be some product in J\{j} whose market share weakly increases.

Proof. Consider the cycle of length 2 containing both the benchmark and counterfactual

market (m,M+1). We have (δM+1−δm) ·sm+(δm−δM+1) ·sM+1 ≤ 0. ∵ (δM+1−δm) =

10The main computational bottleneck is to find all possible cycles itself (generate constraints) due to

its combinatorial nature, not linear programming.



10 KHAI X. CHIONG1, YU-WEI HSIEH2, AND MATTHEW SHUM3

[0, . . . , βp(p
M+1
j − pmj ), . . . , 0], ∴ βp(p

M+1
j − pmj )smj − βp(p

M+1
j − pmj )sM+1

j ≤ 0. If βp ≤ 0,

we have (pM+1
j − pmj ) · (sM+1

j − smj ) ≤ 0. �

While our framework asserts that the market share of a product is weakly decreasing in

its price, it does not assert gross substitution more broadly. That is, the requirement that

whenever the price of j increases, the market shares for all other products weakly increase.

Our framework thus allows for some degree of complementarity.

When desired, we can easily impose gross substitution in our counterfactual framework.

Suppose we are interested in the counterfactual of increasing the price of product v in

market m. Then the upper bound counterfactual market share for products i = 1, . . . , J

is given by:

max sM+1
i(7)

s.t.
J∑

j=1

sM+1
j = 1

K∑
k=1

(δlk+1 − δlk) · slk ≤ 0; lK = M + 1; 2 ≤ K ≤M

sM+1
j ≥ smj ∀j 6= v (gross substitution constraints)

sM+1
v ≥ 0

When we conduct the counterfactual of decreasing the price of v, then the gross substi-

tution constraints are sM+1
j ≤ smj for all j 6= v. For some problems, it is reasonable to

assume that all products are gross substitutes.11 Imposing gross substitution also narrows

down the identified set.

4. Monte Carlo simulations

In this section we conduct a Monte Carlo simulation to study the identified set of counter-

factuals. The main finding is that our counterfactual bounds always cover the true Logit

counterfactual market shares in all 100 runs, therefore it has a coverage probability of

11Berry et al. (2013) show that certain forms of gross substitution, in particular connected substitution,

are sufficient for the invertibility of demand, which is fundamental for many demand estimation methods

such as Berry et al. (1995).
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100%. We also find that the length of the bounds is typically tight, with the worst-case

average of around 5% of market shares (see Table 1).

Table 1. Monte Carlo simulation: (upper bound− lower bound)

M = 200 M = 500 M = 1000

s1 s2 s3 s1 s2 s3 s1 s2 s3

p1 +1% 0.0417 0.0263 0.0525 0.0297 0.0161 0.0340 0.0233 0.0114 0.0256

(.0012) (.0007) (.0013) (.0008) (.0004) (.0013) (.0007) (.0004) (.0008)

p2 +1% 0.0566 0.0151 0.0581 0.0355 0.0113 0.0364 0.0263 0.0090 0.0283

(.0018) (.0005) (.0018) (.0009) (.0003) (.0009) (.0008) (.0002) (.0008)

p3 +1% 0.0474 0.0260 0.0416 0.0334 0.0165 0.0306 0.0240 0.0122 0.0231

(.0013) (.0007) (.0013) (.0009) (.0005) (.0008) (.0008) (.0003) (.0006)

Reported figures are averages across 100 replications. We report the width of the bounds

rather than coverage, because our bounds always cover the true (Logit) counterfactual,

and so the coverage probability is 100%.

We first generate (market-invariant) product-specific regressors Xj = (xj1, xj2, xj3) from

multivariate normal with

µ =

 0.5

0.5

0.5

 , Σ =

 1 −0.7 0.3

· 1 0.3

· · 1

 .
The price of product j, pmj , in market m is generated according to

pmj = |1.1(xj1 + xj2 + xj3) + εmj |

εmj ∼ N (0, 0.32).

The mean utility δmj is then computed as [Xj , p
m
j ]β, where β = [1.5, 1.5, 0.8,−2.2]

′
. The

market shares are computed under the Logit model, assuming a Type-I Extreme Value

distribution. We set the number of products to be J = 3. We first generate one benchmark

market, which is then held fixed across Monte Carlo repetitions. For each Monte Carlo

repetition, we generate another M − 1 markets from the above DGP. We then compute
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the upper and lower bounds counterfactuals sM+1
i for i = 1, 2, 3 under +1% increase in

pm̄j , j = 1, 2, 3 of the benchmark market m̄. We repeat this procedure 100 times, and

report the average length of the bounds in Table 1. The standard deviations across the

100 repetitions are reported in parentheses.

We also vary the number of markets, that is, M ∈ {200, 500, 1000}. The results are

summarized in Table 1. We use only cycles of length 2, but using cycles up to length 3

does not make much of a difference.

5. Empirical illustration: Supermarket sales of coffee

For our empirical application, we use the IRI Marketing Dataset (Bronnenberg et al.

(2008)) – which is a retail scanner dataset containing weekly pricing, sales volume, and

promotion data of participating retail stores. We will focus on the product category of

coffee, within the time-frame of the year 2005.

Each observation in the IRI dataset is at the level of store-product-week. We take all

stores and aggregate them at the level of 6 major metropolitan areas: Boston, Chicago,

Dallas, Houston, Milwaukee, Washington DC. As such, the unit of observation is (j, t),

where j is the product, and t is the market – each market is defined as a week-metro

combination. For instance, Houston during Week 3 is one such market. Therefore, there

are 318 markets in total.

The consumer’s choice set consists of 7 brands: Chock Full O Nuts, Eight O Clock, Folgers,

Maxwell House, Private Label, Seattle’s Best, Starbucks. Now Private Label is the brand

of coffee carried by the participating individual stores. We also include an Outside Option

as a composite good consisting of all other smaller coffee brands. The average market

share of a coffee brand is tabulated in Table 2.

The dependent variable is Share, which is the number of units sold in a market divided

by the total number of all units sold in a market. The main covariate is Price, which is

the average retail price paid per unit of the product in a market. We have three other

covariates measuring the degree of product promotions: PR, Display, and Feature. The

variable PR is a binary variable indicating a temporary price reduction of 5% or more.

The variable Display takes values in {0, 1, 2}, and is defined by IRI as the degree to which

the product is exhibited prominently in the store. The variable Feature takes values in

{0, 1, . . . , 4} which are coded as the degree of advertisement featured by the store retailer.
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These product-specific variables are aggregated to the level of week-metro by means of

weighted average across stores, the weights used are the number of units sold.12

Brands Average Market Share (%)

Chock Full O Nuts 1.86

Eight O Clock 6.10

Folgers 27.38

Maxwell House 15.59

Outside 29.33

Private Label 10.53

Seattles Best 1.22

Starbucks 7.99

Table 2. Average market share of a brand across 318 markets.

5.1. Result

First, we obtain point estimates of the model coefficients using the semiparametric method

of Shi, Shum and Song (2017). Then, we run a series of counterfactual exercises as follows:

for each brand, we increase its price in the median market by 1%, 2%, . . . , 20%, and then

compute the changes in the market shares of all brands in the median market.13

The counterfactual market share is partially identified. In fact, our identified set is multi-

dimensional (one dimension for each product). We slice the identified set in the following

way to further narrow down the identified set. First, we look at the set of counterfactual

market shares that are consistent with Gross Substitution (as discussed in Section 3.3).

That is, we restrict attention to only those counterfactual market shares such that sj is

weakly increasing for all j 6= i when we increase the price of i. Second, we look at the

component-wise midpoints of the identified set.

The main result is given in Figure 1. We plot the absolute increases in market shares for

different brands as a function of percentage increases in the price of a reference brand.

12For example, PRjt, it is constructed as the number of units of j sold that had a temporary price-

reduction in market t divided by the total number of units of j sold in market t.
13The median market in the data is determined using the algorithm PAM (Partitioning Around Medoid).
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The changes in market shares are relative to the pre-counterfactual benchmark market,

which is the median market.

In Figure 1(c), we increase the price of the reference brand, Folgers, and examine the

substitution effects on other brands. (We label the lines in Figures 1 and 2 such that

the brand with the highest substitution strength appears first in the graph legend, and

so on.) We see that Seattle’s Best is the coffee brand that benefits the least, its market

share increases from 1% to 4.5% as the price of Folgers increases from 1% to 20%. In

comparison, Starbucks is a stronger substitute – its market share increases from 1.5% to

7% at the same range.

Crucially, our framework allows for a much richer pattern of substitutions than the Logit

model. The Logit model implies that the elasticity of substitution from product j to i

does not depend on the identity of j. This leads to Figure 2, where the ordering of brands

in terms of substitution strengths is fixed. In contrast, the ordering of how strongly one

brand substitutes another brand changes widely depending on the reference brand.

For example, our analysis shows that (i) Starbucks is a very strong substitute to Seattle’s

Best while being a weak substitute to Eight O Clock. (ii) Folgers is a strong substitute to

all other brands except Seattle’s Best and Starbucks. Using the Logit model, such remark

is not possible, Starbucks is the weakest substitute no matter which reference brand we are

considering. We also observe that the substitution lines can cross one another, that is, one

brand could be a stronger substitute when price increase is modest, but could be a weaker

substitute when price increase is large. In all the figures, there is a noticeable upward

jump at the zero percent price change (corresponding to the observed market shares in

the data). This is because we are reporting the midpoint of the identified interval for each

market share.
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Figure 1. Absolute increases in market shares for different brands as a

result of percentage increases in the price of a reference brand. Each line

corresponds to a brand. The labeling of lines is such that the brand corre-

sponding to the lowest line (weakest substitution) appears last in the graph

legend, etc.
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Figure 2. Substitution between products assuming the logit model. The

labeling of lines is such that the brand corresponding to the lowest line

(weakest substitution) appears last in the graph legend, etc.



COUNTERFACTUAL ESTIMATION IN SEMIPARAMETRIC DISCRETE-CHOICE MODELS 17

6. Concluding remarks

While the literature on semiparametric discrete-choice models is quite large and mature,

empirical applications utilizing these methods have been relatively sparse. This may be

due in part to the absence of methods for counterfactual evaluation utilizing results from

these semiparametric models. Our paper fills in this gap by providing an approach for

evaluating bounds for counterfactual choice probabilities for semiparametric multinomial

choice models, in which the systematic components of utility are specified as a single-

index but the distribution of the error terms are left unspecified. Exploiting the property

of cyclic monotonicity (a convex-analytic property of the random utility choice model),

we derive upper and lower bounds on choice probabilities for hypothetical counterfactual

scenarios which may lie outside the range of the observed data. Monte Carlo simulations

and an empirical illustration using scanner data show that our method works well in

practice.
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A. Additional remarks: Rank-order property

Here we study the rank order condition studied by Fox (2007): δi > δj ⇔ si > sj and consider its

implications for evaluating counterfactual choice probabilities. The Rank order condition can be

viewed as a generalization of the IIA property, and is implied by the exchangeable, continuously-

distributed error terms with full support. When applying to the counterfactual evaluation, rank

order condition implies that sM+1 should satisfy

Assumption 2. (Rank Order): Suppose σ is the permutation on {1, 2, . . . , J} such that δσ(1) ≥
δσ(2) ≥ . . . ≥ δσ(J). The rank order condition implies that the same permutation also sorts the

market shares in decreasing order: sσ(1) ≥ sσ(2) ≥ . . . ≥ sσ(J).

By definition, rank order is a within-market restriction: it only places restriction directly on

(δM+1, sM+1), regardless of other sample information as well as the magnitude of the price change.

To investigate further, we rewrite these inequalities in matrix form. Suppose sM+1 is a J × 1 col-

umn vector, and P is the J × J permutation matrix representing σ: P [j, σ(j)] = 1, j = 1, . . . , J

and zero otherwise.

D · P · sM+1 ≤ 0,

where D is the (J − 1)× J bi-diagonal matrix with the elements (−1, 1) in the (j, j + 1) positions

in row j. From this representation, we see that the constraint matrix D ·P only contains (−1, 1, 0)

and hence does not depend on other market-level data (δm, sm). As a result, its identified set will

be invariant to the the sample size and the magnitude of the price change. Moreover, the rank

order condition implies a simple component-wise upper bound for sj :

Proposition 3. sσ(j) is bounded above by 1
j , regardless of the number of alternative J .

proof: It is trivial to show that the upper bound for the market share sσ(1) corresponding to the

largest mean utility δσ(1) is 1, as sσ = (1, 0, . . . , 0) does not violate the rank order condition.

Similarly, max sσ(j) is at most 1
j , otherwise sσ(j) > sσ(1), violating the rank order condition.
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