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A (point) estimator is any function θ̂(X1, . . . , Xn) of a random sample. An estimator
is both a statistic and a random variable. An estimate is a realized value of this
random variable.

In some cases, there are natural candidates to estimate a population parameter (such
as estimating the population mean with the sample mean), but in other cases, it is
more difficult. We will study various ways of coming up with sensible estimators
and evaluate these estimators.

1. Method of Moments

In the Method of Moments (MOM) approach, estimators are found by solving a
system of simultaneous equations. These equations arise from equating the first k
sample moments to the corresponding k population moments.

Let X1, . . . , Xn ∼i.i.d f(x|θ1, . . . , θl), where θ1, . . . , θl are parameters to be esti-
mated.

The k-th sample moment is:

mk =
1

n

n∑
i=1

Xk
i

The k-th population moment is:

E[Xk] ≡ µk(θ1, . . . , θl)(1)

Implicit in Equation 1 above, the population moment depends on population pa-
rameters θ1, . . . , θl. We can then solve for θ1, . . . , θl in terms of X1, . . . , Xn in the
following system of equations: mk = µk(θ1, . . . , θl), for k = 1, . . . , K.

The Method of Moments estimator is justified through the WLLN and the SLLN:
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1

n

n∑
i=1

Xk
i → E[Xk], almost surely and in probability as n→∞

1.1. Example: parameters of the Normal distribution

Suppose X1, . . . , Xn are iid N (µ, σ2). We would like to come up with estimators for
µ and σ2.

Equating the first sample moment with the first population moment:

1

n

n∑
i=1

Xi = E[X] = µ(2)

Equating the second sample moment with the second population moment:

1

n

n∑
i=1

X2
i = E[X2]

1

n

n∑
i=1

X2
i = µ2 + σ2(3)

Solving the system of equations 2 and 3, we obtain 1
n

∑n
i=1Xi as an estimator for

µ and 1
n

∑n
i=1X

2
i − ( 1

n

∑n
i=1Xi)

2 = 1
n

∑n
i=1(Xi − X̄)2 as an estimator for σ2. The

application of Method of Moments here results in some familiar estimators, but it
does not recover the unbiased sample variance.

1.2. Example: parameters of the Uniform distribution

X1, . . . , Xn ∼i.i.d U [0, θ], where θ is the parameter.

Equating the first sample moment and the first population moment:

1
n

∑n
i=1Xi = E[X] = θ

2
. Therefore, θ̂MOM = 2

n

∑n
i=1Xi = 2X̄.

Is this a reasonable estimator? Suppose the realized data is x1 = 1, x2 = 2, then
θ̂MOM = 3. What if we have x1 = 0.1, x2 = 0.1, x3 = 1, then θ̂MOM = 0.8.

What is the sampling distribution of θ̂MOM? Since X̄ is asymptotically Normal:

√
n

(
X̄ − θ

2

)
→d N

(
0,
θ2

12

)
By either the Delta method or the Continuous Mapping Theorem,

2



MECO 7312 Lecture 7: Point Estimation

√
n
(
2X̄ − θ

)
→d N

(
0,
θ2

3

)
That is, θ̂MOM ≈ N (θ, θ

2

3n
). Consistency is implied here. Moreover, for this example,

our estimator is also unbiased.

In general, the Method of Moments estimator is a function of sample moments, and
sample moments are asymptotically Normal by CLT. That is, supposeX1, . . . , Xn ∼i.i.d
f(x), the asymptotic distribution of the k-th sample moment is given by:

√
n

(
1

n

n∑
i=1

Xk
i − E[Xk]

)
→d N (0,Var(Xk))

Where E[Xk] =
∫
xkf(x) dx. We can therefore use Delta Method to derive the

asymptotic distribution of the Method of Moments estimator. Other alternative
methods are bootstrapping and simulation.

1.3. Asymptotics of Method of Moments

For k = 1, . . . , K, define the k-th sample moment and its population counterpart
by

mk,n =
1

n

n∑
i=1

Xk
i , µk(θ) = Eθ[Xk].

Collect these into vectors

mn =
(
m1,n, . . . ,mK,n

)>
, µ(θ) =

(
µ1(θ), . . . , µK(θ)

)>
.

Joint CLT for sample moments: If Eθ[|X|2K ] < ∞, then by the multivariate
CLT √

n
(
mn − µ(θ)

) d−→ N (0, Ω) ,

where for j, k ∈ {1, . . . , K},
Ωjk = Cov(Xj, Xk) = E[Xj+k]− E[Xj]E[Xk]

Assume the number of moments equals the number of parameters, i.e. K = p =
dim(θ); µ(θ) is continuously differentiable, and the Jacobian

J(θ) =
∂ µ(θ)

∂θ
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is nonsingular (local identification). Let θ̂MOM solve mn = µ(θ̂MOM). Define the

inverseψ of µ at θ so thatψ(µ(θ)) = θ and θ̂MOM = ψ(mn). Applying multivariate
Delta method from the last lecture,

√
n
(
θ̂MOM − θ

)
=
√
n
(
ψ(mn)−ψ(µ(θ))

) d−→ N
(
0, Jψ ΩJ>ψ

)
,

where Jψ = ∂ψ
∂µ(θ)

. By the implicit function theorem, Jψ =
[
J(θ)

]−1
, hence the

asymptotic covariance of the MOM is given by,

V = J(θ)−1 ΩJ(θ)−> .

1.4. Example: parameters of the Binomial distribution

Let X1, X2, . . . , Xn be iid from binomial(k, p), that is P (Xi = x|k, p) =
(
k
x

)
px(1 −

p)k−x for x = 0, 1, . . . , k.

Both k and p are unknown parameters to be estimated.

1

n

n∑
i

Xi = kp

1

n

n∑
i

X2
i = kp(1− p) + k2p2

Solving the equations above in terms of k and p:

p̂ = 1−
1
n

∑n
i X

2
i − X̄2

X̄

k̂ =
X̄2

X̄ + X̄2 − 1
n

∑n
i X

2
i

If the data are (1, 1, 0, 0), then p̂ = 0.5 and k̂ = 1. If the data are (3, 4, 5), then

p̂ = 0.83 and k̂ = 4.8.

1.5. Example: mixture distribution

Now consider a mixture of two Normal random variables:

f(x|θ) = λ
1√
2π
e−(x−µ1)

2/2 + (1− λ)
1√
2π
e−(x−µ2)

2/2
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where θ = (λ, µ1, µ2) are parameters to be estimated. Mixtures of normals are used
to fit data that has multiple modes.

Since there are 3 unknowns, we need at least 3 moments equations.

1

n

∑
Xi =

∫
xf(x|θ) dx = λµ1 + (1− λ)µ2

1

n

∑
X2
i =

∫
x2f(x|θ) dx = λµ2

1 + (1− λ)µ2
2 + 1

1

n

∑
X3
i =

∫
x3f(x|θ) dx = λµ1(µ

2
1 + 3) + (1− λ)µ2

(
µ2
2 + 3

)
The above system of equations can be solved numerically. Suppose our data is
(−3,−2, 2, 3), then m1 = 0, m2 = 6.5, m3 = 0, where mk = 1

n

∑
xki denotes

the realized k-sample moment. Solving for the unknowns, there are two sets of
solutions: (λ, µ1, µ2) = (0.5,−2.345, 2.345) and (λ, µ1, µ2) = (0.5, 2.345,−2.345).
However, either of these solutions lead to the same pdf (also plot the pdf to see it
has two distinct modes).

What if the data are (−2,−1, 3, 4, 5)? Check that m1 = 1.8, m2 = 11, m3 = 41.4,

and we obtain the estimates: λ̂ = 0.411, µ̂1 = −1.31, µ̂2 = 3.97.

1.6. Linear regression

Consider a random variable Y is generated as: Y = a + bX + ε, where a and b are
some unknown parameters, and ε ∼ N (0, σ2). Moreover, X is a random variable
such that E[Xε] = 0. Now suppose we have a random sample Y1, . . . , Yn of Y , and
a random sample X1, . . . , Xn of X. We wish to estimate a and b via the moment
conditions below:

0 = E[ε] = E[Y − a− bX] =
1

n

n∑
i=1

Yi − a− b
1

n

n∑
i=1

Xi(4)

0 = E[Xε] = E[X(Y − a− bX)] =
1

n

n∑
i=1

XiYi − a
1

n

n∑
i=1

Xi − b
1

n

n∑
i=1

X2
i(5)

Multiplying Equation 4 by X̄ and then subtracting it from Equation 5:
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0 =
1

n

n∑
i=1

XiYi − X̄Ȳ − b
1

n

n∑
i=1

X2
i + bX̄2

b =
1
n

∑n
i=1XiYi − X̄Ȳ

1
n

∑n
i=1X

2
i − X̄2

Which is the sample covariance divided by the sample variance. Moreover,

a = Ȳ − bX̄

Hence, the method of moments estimators give rise to the usual formulas for cal-
culating regression coefficients. What about σ2? We can just add an additional
moment condition E[ε2] = σ2.

Note: we can even relax the assumption that ε is Normally distributed!

In a multivariate regression, we have Y = Xβ + ε, where β is a K × 1 vector of
parameters, and X = (X1, . . . , XK) is a 1×K vector of random variables. Since we
have K number of unknown parameters, the K number of moment conditions are
given by:

E[X1ε] = 0

E[X2ε] = 0

...

E[XKε] = 0

2. Generalized Method of Moments (GMM)

Using additional moments can improve the efficiency of estimation, i.e. lowering
the variance of the estimator. However, if there are more equations to solve than
there are parameters, the Method of Moments estimation is infeasible. The GMM
estimator, due to Hansen (1982), extends the MOM approach.

Consider the following system of K equations, for some functions g1, . . . , gK . Each
equation below is called a moment condition.
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Eθ[g1(X)] =
1

n

∑
i=1

g1(Xi)

...

Eθ[gK(X)] =
1

n

∑
i=1

gK(Xi)

For example, by letting g(X) = eX or g(X) = X2, we can obtain many different
moment conditions such as E[eX ] or E[X2].

Implicit here is the assumption that X1, . . . , Xn are i.i.d from a density f(x | θ),
where θ is an unknown parameter that enters into the pdf. Therefore the population
expectation on the left-hand side is taken with respect to f(x | θ).

Let θ be a q-dimensional vector of parameters. When K = q, then we say that
the model is just-identified. If K > q, the model is said to be overidentified and
the above system of equations has no solution for θ since there are more equations
(K) than there are unknowns (q). The Method of Moments is a special case of the
GMM estimation when K = q. In GMM, we allow for K > q, and we are free
to incorporate as many different moment conditions as we would like, which often
leads to a better estimator than the Method of Moments.

Since there is no solution to the system of equation, GMM estimator proposes to
find θ that best satisfies the system of equations above in terms of quadratic loss.
That is, the GMM estimator minimizes an objective function as follows:

θ̂ = argmin
θ

K∑
k=1

(
E[gk(X, θ)]−

1

n

n∑
i=1

gk(Xi)

)2

Example:

Let X1, . . . , Xn ∼i.i.d U [0, θ], where θ is the parameter.

Consider the first 3 sample moment and the corresponding population moments:
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θ

2
=

1

n

n∑
i=1

Xi

θ2

3
=

1

n

n∑
i=1

X2
i , since E[X2] =

θ2

3

θ3

4
=

1

n

n∑
i=1

X3
i

The Generalized Method of Moments estimator would solve the following minimiza-
tion problem:

θ̂ = argmin
θ

(
1

n

n∑
i=1

Xi −
θ

2

)2

+

(
1

n

n∑
i=1

X2
i −

θ2

3

)2

+

(
1

n

n∑
i=1

X3
i −

θ3

4

)2

(6)

Suppose again that realized data is x1 = 0.1, x2 = 0.1, x3 = 1. If we use only the
first moment, then θ̂MOM = 0.8. However, if we use all three moments, we can show
numerically that θ̂ = 1.01502 in the following minimization.

θ̂ = argmin
θ

(
1.2/3− θ

2

)2

+

(
1.02/3− θ2

3

)2

+

(
1.002/3− θ3

4

)2

(7)

Hansen (1982)1 shows that the GMM estimator has good large sample properties,
it is consistent and asymptotically normal under some assumptions. That is,

√
n(θ̂GMM − θ)→d N (0, V )

Where V is the asymptotic variance θ̂GMM . Hansen (1982) then shows how to
calculate V as a function of the data (i.e., he provides a consistent estimator for V ).

Later on, the asymptotic distribution of θ̂GMM can be used for inference: hypothesis
testing and confidence interval regarding θ̂GMM .

2.0.1. Optimal GMM

In fact, we can do better than the previous estimator. In the above GMM estimator,
we put equal weight on each of the moment conditions. In Optimal GMM, we put
more weight on the informative moment condition, such that the variance of the
GMM estimator is the smallest. To discuss the implementation of Optimal GMM,
we rewrite the moment conditions as:

1“Large Sample Properties of Generalized Method of Moments Estimators”. Econometrica
(1982).

8



MECO 7312 Lecture 7: Point Estimation

E[h1(θ,X)] = 0

...

E[hK(θ,X)] = 0

Where h1(θ,X) := Eθ[g1(X)]−g1(X). Define the vector h(θ,X) = (h1(θ,X), . . . , hK(θ,X))
as a K × 1 vector of moment conditions. As before, we propose to approximate
E[h(θ,X)] using the sample moment 1

n

∑n
i=1 h(θ,Xi).

The (inefficient) GMM estimator with equal weight is equivalent to minimize the
following objective function:

Q(θ) =
K∑
k=1

(
1

n

n∑
i=1

hk(θ,Xi)

)2

=

(
1

n

n∑
i=1

h(θ,Xi)

)T (
1

n

n∑
i=1

h(θ,Xi)

)
(8)

Let W be a K×K weighting matrix (any symmetric positive definite that does not
depend on θ). GMM estimator with a general weighting matrix W minimizes the
following objective function:

Q(θ) =

(
1

n

n∑
i=1

h(θ,Xi)

)T

W

(
1

n

n∑
i=1

h(θ,Xi)

)

For example, when there are only two moment conditions, Q(θ) = W11

(
1
n

∑n
i=1 h1(θ,Xi)

)2
+

2W12

(
1
n

∑n
i=1 h1(θ,Xi)

) (
1
n

∑n
i=1 h2(θ,Xi)

)
+ W22

(
1
n

∑n
i=1 h2(θ,Xi)

)2
, where W =(

W11 W12

W12 W22

)
.

Hansen (1982) shows that the optimal W , in the sense that the asymptotic variance
is minimized, is given by the precision matrix of the moment conditions. Let S be
the sample variance-covariance matrix of the vector of moment conditions, h(θ,X).
The diagonal entries2 Skk = 1

n

∑n
i=1 hk(θ,Xi)

2, and the non-diagonal entries3 Slm =
1
n

∑n
i=1 hl(θ,Xi)hm(θ,Xi). Succinctly written as:

S =
1

n

n∑
i=1

h(θ,Xi)h(θ,Xi)
T(9)

2Corresponds to Var(hk(θ,X))
3Corresponds to Cov(hl(θ,X), hm(θ,X))
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The optimal weighting matrix is W = S−1.

Since θ is unknown in Equation 9 above, we can plug in any consistent estimator of
θ to obtain a consistent estimator of S, which in turn will lead to an optimal GMM
asymptotically, as proved by Hansen (1982). The following two-steps Optimal GMM

is most used in practice. First, obtain a consistent estimator of θ̂ using a GMM with
equal weighting, i.e. Equation 8. Then in the second step, calculate Ŝ by plugging
θ̂ into Equation 9. The GMM estimator is obtained by using Ŝ−1 as the weighting
matrix, i.e.

Q(θ) =

(
1

n

n∑
i=1

h(θ,Xi)

)T

Ŝ−1

(
1

n

n∑
i=1

h(θ,Xi)

)

Revisiting the previous example, h(θ,X) =

 X − θ
2

X2 − θ2

3

X3 − θ3

4


In the accompanying Python Notebook, we illustrate the differences in performance
between (i) Method of Moments, (ii) GMM with identity weighting matrix, and (iii)
the 2-steps optimal GMM.

Define J to be the Jacobian matrix of the moment conditions h(θ,X) with respect
to θ, and S to be the variance-covariance matrix of the moment conditions.

J := E
[
∂h(θ,X)

∂θ

]
∈ RK×q, S := Var

(
h(θ,X)

)
∈ RK×K ,

Under standard regularity conditions, the optimal GMM has the following asymp-
totic distribution:

√
n (θ̂ − θ) d−→ N

(
0, (J>S−1J)−1

)
,

Consistent plug-in estimators. Use

Ĵ =
1

n

n∑
i=1

∂h(θ,Xi)

∂θ

∣∣∣∣
θ=θ̂

, Ŝ =
1

n

n∑
i=1

h(θ̂, Xi)h(θ̂, Xi)
>,

and plug into the formulas above.

Hence, the formula for the asymptotic variance of optimal GMM is given by the
q × q matrix:

Var(θ̂) ≈ 1

n
(ĴT Ŝ−1Ĵ)−1
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Where the matrix Ĵ is the K × q Jacobian matrix with entries at k-th row and l
column as:

[Ĵ ]kl =
1

n

n∑
i=1

∂hk(θ,Xi)

∂θl

∣∣∣
θ=θ̂

(10)

We can take θ̂ to be any consistent estimator of θ. It is typical to plug in the optimal
GMM into the variance formula, Equation 10.

In our example, ∂h(θ,Xi)
∂θ

∣∣∣
θ=θ̂

=

 −1
2

−2θ̂
3

−3θ̂2

4

, hence, Ĵh =

 −1
2

−2θ̂
3

−3θ̂2

4


When there are more moment conditions than unknowns, over-identification allows
us to check whether our assumed model of data-generating process is valid. This is
known as the Sargan-Hansen J-test. The intuition is that if the objective function is
minimized at a value close to zero, then we do not reject the hypothesis our sample
is drawn from the assumed data-generating process.
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