LECTURE 4: MULTIVARIATE RANDOM VARIABLES II

MECO 7312. INSTRUCTOR: DR. KHAI CHIONG SEPTEMBER 20, 2023

1. Important identities

1.1. Law of iterated expectations

$$\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|X]]$$

Now $\mathbb{E}[Y|X]$ is a scalar random variable, and inhabits the same probability space as X. Therefore, the outer expectation on the right-hand side is taken with respect to $f_X(x)$.

$$\mathbb{E}[Y|X=x] = \int_{-\infty}^{\infty} y f_{Y|X=x}(y|x) \, dy$$
$$= g(x)$$

$$\mathbb{E}[\mathbb{E}[Y|X]] = \mathbb{E}[g(X)]$$

$$= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} y f_{Y|X}(y|x) \, dy \right) f(x) \, dx$$

Intuitively, suppose we use realizations of the variable X to predict Y. Then the average of the predicted values over X equals to the average of Y.

Example:

Recall the pdf f(x,y) = x + y with the support on $\{(x,y) \in \mathbb{R}^2 : 0 \le x \le 1, 0 \le y \le 1\}$. Previously, we found that:

$$\mathbb{E}[Y|X] = \frac{2+3X}{3+6X}$$

Therefore,

$$\mathbb{E}[\mathbb{E}[Y|X]] = \int \frac{2+3x}{3+6x} f_X(x) dx$$

$$= \int_0^1 \frac{2+3x}{3+6x} \left(\frac{1}{2} + x\right) dx$$

$$= \frac{1}{6} \left(\frac{3x^2}{2} + 2x\right) \Big|_0^1$$

$$= \frac{7}{12}$$

$$= \mathbb{E}[Y]$$

1.2. Important properties of conditional expectations

This section is adapted from Chapter 2 of "Econometric Analysis of Cross Section and Panel Data" by Jeffrey M. Wooldridge.

Let Y, W be random variables. Let X be the random variable such that X = g(W), for some function q.

Comparing $\mathbb{E}[Y|W]$ and $\mathbb{E}[Y|X]$, we can think of $\mathbb{E}[Y|X]$ as conditioning on a set of events that is a subset of the set of events being conditioned on in $\mathbb{E}[Y|W]$. Because if we know the outcome of W, then we would know X, but the converse is not true.

(1)
$$\mathbb{E}[\mathbb{E}[Y|X]|W] = \mathbb{E}[Y|X]$$

(2)
$$\mathbb{E}[\mathbb{E}[Y|W]|X] = \mathbb{E}[Y|X]$$

A phrase useful for remembering both equations above: "The smaller information set always dominates". This is also known as the Tower Property of conditional expectations, which can be demonstrated more formally with measure-theoretic notations.

Some consequences of this useful property:

(3)
$$\mathbb{E}[\mathbb{E}[Y|X]|X^2] = \mathbb{E}[\mathbb{E}[Y|X^2]|X] = \mathbb{E}[Y|X^2]$$

(4)
$$\mathbb{E}[\mathbb{E}[Y|X,Z]|X] = \mathbb{E}[\mathbb{E}[Y|X]|X,Z] = \mathbb{E}[Y|X]$$

1.3. Conditional variance identity

$$Var(Y) = \mathbb{E}[Var(Y|X)] + Var(\mathbb{E}[Y|X])$$

 $\mathbb{E}[Y|X]$ and Var(Y|X) are each scalar random variable that is a transformation of X and has the same probability space as X. Therefore, the expectation and variance on the right-hand side is taken with respect to the pdf $f_X(x)$.

Example:

Using the same example as before, we have the pdf f(x,y) = x + y with the support on $\{(x,y) \in \mathbb{R}^2 : 0 \le x \le 1, 0 \le y \le 1\}$.

$$\mathbb{E}[Y|X] = \frac{2+3X}{3+6X}$$

$$\operatorname{Var}(\mathbb{E}[Y|X]) = \mathbb{E}[(\mathbb{E}[Y|X])^2] - (\mathbb{E}[\mathbb{E}[Y|X]])^2$$

$$= \int_0^1 \left(\frac{2+3x}{3+6x}\right)^2 f_X(x) \, dx - \mathbb{E}[Y]^2$$

$$= \int_0^1 \left(\frac{2+3x}{3+6x}\right)^2 \left(\frac{1}{2}+x\right) \, dx - \left(\frac{7}{12}\right)^2$$

$$= \frac{1}{288}(96 + \log(9)) - \frac{49}{144}$$

We can derive Var(Y|X) by:

$$\begin{aligned} \operatorname{Var}[Y|X = x] &= \mathbb{E}[Y^2|X = x] - (\mathbb{E}[Y|X = x])^2 \\ &= \int_0^1 y^2 f_{Y|X = x}(y|x) \, dy - (\mathbb{E}[Y|X = x])^2 \\ &= \int_0^1 y^2 \frac{2(x+y)}{1+2x} \, dy - \left(\frac{2+3x}{3+6x}\right)^2 \\ &= \frac{4x+3}{12x+6} - \left(\frac{2+3x}{3+6x}\right)^2 \\ &= \frac{1}{36} \left(3 - \frac{1}{(2x+1)^2}\right) \end{aligned}$$

$$\mathbb{E}[\text{Var}[Y|X]] = \int_0^1 \frac{1}{36} \left(3 - \frac{1}{(2x+1)^2}\right) f_X(x) dx$$
$$= \frac{1}{144} (12 - \log(3))$$

Therefore, $\mathbb{E}[\operatorname{Var}[Y|X]] + \operatorname{Var}(\mathbb{E}[Y|X]) = \frac{11}{144} = \operatorname{Var}(Y)$.

2. Example: putting everything together

Suppose X and Y are distributed uniformly on the triangle (0,0),(0,1),(1,0). That is:

$$f_{X,Y}(x,y) = \begin{cases} 2 & \text{if } 0 \le x \le 1, \ 0 \le y \le 1, \ x+y \le 1\\ 0 & \text{otherwise} \end{cases}$$

1.) Is this a valid pdf?

$$\int_{0}^{1} \int_{0}^{1-y} 2 \, dx \, dy$$

Performing the inner integral first with respect to x:

$$\int_0^1 [2x]_0^{1-y} dx = \int_0^1 2(1-y) dy$$
$$= 2\left[y - \frac{y^2}{2}\right]_0^1 = 2(1 - \frac{1}{2}) = 1$$

2.) Derive the marginal pdfs.

$$f_X(x) = \int_0^{1-x} 2 \, dy = 2(1-x) \text{ for } x \in [0,1]$$

$$f_Y(y) = \int_0^{1-y} 2 \, dy = 2(1-y) \text{ for } y \in [0,1]$$

3.) Calculate Cov(X, Y)

$$Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X] \mathbb{E}[Y]$$

$$\mathbb{E}[X] = \int_0^1 2(1-x)x \, dx = \frac{1}{3}$$

$$\mathbb{E}[Y] = \int_0^1 2(1-y)y \, dy = \frac{1}{3}$$

$$\mathbb{E}[XY] = \int \int xy f(x,y) \, dx \, dy$$

$$= \int_0^1 \int_0^{1-y} 2xy \, dx \, dy$$

$$= \int_0^1 [x^2 y]_0^{1-y} \, dy$$

$$= \int_0^1 (1-y)^2 y \, dy$$

$$= \left[\frac{y^2}{2} - \frac{2y^3}{3} + \frac{y^4}{4}\right]_0^1$$

$$= \frac{1}{12}$$

Hence $Cov(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] = \frac{1}{12} - (\frac{1}{3})(\frac{1}{3}) = -\frac{1}{36}$

4.) Calculate $P(Y \le 1 - 2X)$:

$$P(Y \le 1 - 2X) = \int_0^{1/2} \int_0^{1-2x} f(x, y) \, dy \, dx$$
$$= \int_0^{1/2} 2 - 4x \, dx$$
$$= \left[2x - 2x^2 \right]_0^{1/2}$$
$$= \frac{1}{2}$$

5.) Derive $\mathbb{E}[Y|X=x]$ and Var(Y|X=x):

First, the density of Y|X=x:

$$f_{Y|X=x}(y|x) = \frac{f(x,y)}{f(x)} = \frac{2}{2(1-x)}$$
, for $0 \le x \le 1$, $0 \le y \le 1$, $x+y \le 1$

Conditional expectation:

$$\mathbb{E}(Y|X=x) = \int_0^{1-x} y f_{Y|X=x}(y|x) \, dy = \int_0^{1-x} \frac{y}{(1-x)} \, dy = \frac{1-x}{2}$$

Conditional variance:

$$Var(Y|X = x) = \mathbb{E}[Y^2|X = x] - \mathbb{E}[Y|X = x]^2$$

$$= \int_0^{1-x} y^2 f_{Y|X=x}(y|x) \, dy - \left(\frac{1-x}{2}\right)^2$$

$$= \frac{1}{3}(1-x)^2 - \left(\frac{1-x}{2}\right)^2$$

$$= \frac{1}{12}(1-x)^2$$

6.) Derive $Var(\mathbb{E}[Y|X])$ and $\mathbb{E}[Var(Y|X)]$:

$$Var(\mathbb{E}[Y|X]) = \mathbb{E}[(\mathbb{E}[Y|X])^{2}] - \mathbb{E}[\mathbb{E}[Y|X]]^{2}$$

$$= \int_{0}^{1} \left(\frac{1-x}{2}\right)^{2} 2(1-x) dx - \mathbb{E}[Y]^{2}$$

$$= \frac{1}{8} - \frac{1}{9}$$

$$= \frac{1}{72}$$

Alternatively,

$$\operatorname{Var}(\mathbb{E}[Y|X]) = \operatorname{Var}\left(\frac{1-X}{2}\right)$$

$$= \frac{1}{4}\operatorname{Var}(X)$$

$$= \frac{1}{4}\left(\int x^2 2(1-x)dx - \mathbb{E}[X]^2\right)$$

$$= \frac{1}{4}\left(\frac{1}{6} - \frac{1}{9}\right)$$

$$= \frac{1}{4} \times \frac{1}{18} = \frac{1}{72}$$

$$\mathbb{E}(\text{Var}[Y|X]) = \int_0^1 \frac{1}{12} (1-x)^2 \cdot 2(1-x) \, dx$$
$$= \frac{1}{24}$$

Indeed, we see that the Conditional Variance Identity holds true here. $Var(Y) = \mathbb{E}[Var(Y|X)] + Var(\mathbb{E}[Y|X])$, where $Var(Y) = \int_0^1 y^2 2(1-y) \, dy - \frac{1}{9} = \frac{1}{18}$.

3. Transformation of bivariate random variables

Let (X, Y) be a bivariate random vector. Consider a new bivariate random vector (U, V) defined by $U = g_1(X, Y)$, $V = g_2(X, Y)$. What is the probability distribution of (U, V)?

Let \mathcal{A} denote the support of the (X,Y), i.e. $\mathcal{A} = \{(x,y) \in \mathbb{R}^2 : f_{X,Y}(x,y) > 0\}$.

The transformation is $U = g_1(X, Y)$ and $V = g_2(X, Y)$. The support of (U, V) is then $\mathcal{B} = \{(u, v) \in \mathbb{R}^2 : u = g_1(x, y), v = g_2(x, y) \text{ for some } (x, y) \in \mathcal{A}\}.$

Assume that g_1 and g_2 are functions such that the relationship between \mathcal{A} and \mathcal{B} is one-to-one and onto (a bijection). For each $(u, v) \in \mathcal{B}$, there is only one $(x, y) \in \mathcal{A}$ such that $u = g_1(x, y)$ and $v = g_2(x, y)$.

As such, we can solve the equations $u = g_1(x, y)$ and $v = g_2(x, y)$ in terms of x and y. That is, there is an inverse transformation such that $x = h_1(u, v)$ and $y = h_2(u, v)$, where h_1 and h_2 are differentiable functions.

Define the Jacobian matrix:

$$\mathbf{J} = \begin{bmatrix} \frac{\partial h_1}{\partial u} & \frac{\partial h_1}{\partial v} \\ \frac{\partial h_2}{\partial u} & \frac{\partial h_2}{\partial v} \end{bmatrix}$$

The determinant of the Jacobian matrix is:

$$J = \det(\mathbf{J}) = \begin{vmatrix} \frac{\partial h_1}{\partial u} & \frac{\partial h_1}{\partial v} \\ \frac{\partial h_2}{\partial u} & \frac{\partial h_2}{\partial v} \end{vmatrix}$$

That is, $J = \frac{\partial h_1}{\partial u} \frac{\partial h_2}{\partial v} - \frac{\partial h_1}{\partial v} \frac{\partial h_2}{\partial u}$.

The joint pdf of (U, V) is:

$$f_{U,V}(u,v) = \begin{cases} f_{X,Y}(h_1(u,v), h_2(u,v)) |J| & \text{for } (u,v) \in \mathcal{B} \\ 0 & \text{otherwise} \end{cases}$$

 $|\det(\mathbf{J})|$ is often called the Jacobian, or the Jacobian of the transformation, or the Jacobian determinant. Note that $\det(\mathbf{J})$ is a function of u, v. Moreover, $\det(\mathbf{J}) \neq 0$ since there is an inverse transformation such that $x = h_1(u, v)$ and $y = h_2(u, v)$, where h_1 and h_2 are differentiable functions. The Jacobian is also used during change-of-variables in multiple integrals.

3.1. Example

Let X and Y be independent, standard Normal random variables.

Consider the transformation U = X + Y and V = X - Y. What is the joint pdf of (U, V)?

The joint pdf of (X,Y) is just $f_{X,Y}(x,y) = f_X(x)f_Y(y) = \frac{1}{2\pi}e^{-\frac{x^2}{2}}e^{-\frac{y^2}{2}}$ since X and Y are independent.

The support of (X,Y) is \mathbb{R}^2 . It follows that U and V can also take any value from $-\infty$ to ∞ .

The inverse transformation is $x = h_1(u, v) = \frac{u+v}{2}$ and $y = h_2(u, v) = \frac{u-v}{2}$.

The Jacobian of the transformation is:

$$J = \begin{vmatrix} \frac{\partial h_1}{\partial u} & \frac{\partial h_1}{\partial v} \\ \frac{\partial h_2}{\partial u} & \frac{\partial h_2}{\partial v} \end{vmatrix} = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{vmatrix} = -\frac{1}{2}$$

Hence the joint pdf of (U, V) is:

$$f_{U,V}(u,v) = f_{X,Y}(h_1(u,v), h_2(u,v)) |J|$$

$$= \frac{1}{2\pi} e^{-\frac{(\frac{u+v}{2})^2}{2}} e^{-\frac{(\frac{u-v}{2})^2}{2}} \frac{1}{2}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sqrt{2}} e^{-\frac{u^2}{4}}\right) \left(\frac{1}{\sqrt{2\pi}\sqrt{2}} e^{-\frac{v^2}{4}}\right)$$

Note that the pdf of $N(\mu, \sigma^2)$ is $\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$.

Hence the joint pdf of (U, V) can be factored into two functions $f_U(u)$ and $f_V(v)$. Moreover, $f_U(u)$ is the pdf of N(0, 2). That is, $U \sim N(0, 2)$ and $V \sim N(0, 2)$. The sum (U) and difference (V) of independent normal random variables are independent normal random variables, as long as Var(X) = Var(Y).

We can also consider the ratio and the product of Normal variables. Consider the transformation U = X/Y and V = X. What is the joint pdf of (U, V)? What about the product V = XY?

3.2. Discrete bivariate random vectors

Let (X, Y) be a discrete bivariate random vector. Let \mathcal{A} be the support of (X, Y), i.e. the set of points where the joint pmf of (X, Y) takes strictly positive values. Note that \mathcal{A} must be a countable set (either finite or countably infinite).

The joint pmf of (U, V) is:

$$f_{U,V}(u,v) = P(U=v,V=v) = \sum_{(x,y)\in\mathcal{A}:g_1(x,y)=u,g_2(x,y)=v} f_{X,Y}(x,y)$$

4. Some important inequalities

4.1. Jensen's Inequality

A function g(x) is convex if and only if $\lambda g(x) + (1 - \lambda)g(y) \ge g(\lambda x + (1 - \lambda)y)$ for $0 < \lambda < 1$. Graphically, a straight line connecting any two points of the convex function lies above the function.

Jensen's Inequality: For any random variable X, if g(X) is convex, then $\mathbb{E}[g(X)] \ge g(\mathbb{E}[X])$.

For example: take $g(X) = X^2$, then $\mathbb{E}[X^2] \ge (\mathbb{E}[X])^2$, which implies that $\mathbb{E}[X^2] - (\mathbb{E}[X])^2 \ge 0$.

4.2. Concentration inequalities (Markov and Chebychev's Inequalities)

Concentration inequalities provide bounds on the probabilities of a random variable deviating from a certain value. Markov's inequality and Chebyshev's inequality are examples of concentration inequalities. Let X be a random variable and g(X) be a non-negative function. Chebyshev's inequality: for any $\epsilon > 0$,

$$P(g(X) \ge \epsilon) \le \frac{\mathbb{E}[g(X)]}{\epsilon}$$

Proof:

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x)f(x) dx$$

$$\geq \int_{x:g(x) \geq \epsilon}^{\infty} g(x)f(x) dx$$

$$\geq \int_{x:g(x) \geq \epsilon}^{\infty} \epsilon f(x) dx$$

$$= \epsilon P(g(X) \geq \epsilon)$$

Markov's inequality is just $P(X \ge \epsilon) \le \frac{\mathbb{E}[X]}{\epsilon}$.

Now let $g(x) = \frac{(x-\mu)^2}{\sigma^2} \ge 0$, where $\mu = \mathbb{E}[X]$ and $\sigma^2 = \text{Var}(X)$. Note that g is always positive. By the Chebyshev's inequality,

$$P(g(X) \ge \epsilon^2) \le \frac{\mathbb{E}[g(X)]}{\epsilon^2}$$

$$P(\frac{(X - \mu)^2}{\sigma^2} \ge \epsilon^2) \le \frac{\mathbb{E}[\frac{(X - \mu)^2}{\sigma^2}]}{\epsilon^2}$$

$$P(\frac{(X - \mu)^2}{\sigma^2} \ge \epsilon^2) \le \frac{1}{\epsilon^2}$$

$$P(|X - \mu| \ge \epsilon\sigma) \le \frac{1}{\epsilon^2}$$
(5)

If we take $\epsilon = 2$, then $P(|x - \mu| \ge 2\sigma) \le 0.25$ or $P(|x - \mu| < 2\sigma) > 0.75$. That is, there is at least 75% chance that a random variable (any random variable!) will be within 2 standard deviation of its mean.

In general, the Chebyshev's inequality can be used to show that as $Var(X_n) \to 0$, $P(|X_n - \mu| \ge \epsilon) \to 0$, by taking $g(X) = (X - \mu)^2$.

As such, Chebyshev's inequality can be used to prove the Weak Law of Large Numbers. Let X_1, \ldots, X_n be n independent random variables, each with the same density f. Define the sample mean as the random variable $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$. Note that \bar{X} has expectation $\mathbb{E}[X] \equiv \mu$, and variance $\frac{\operatorname{Var}(X)}{n} \equiv \frac{\sigma^2}{n}$.

By the inequality in (5), we have:

$$P(|\bar{X} - \mu| \ge \epsilon \frac{\sigma}{\sqrt{n}}) \le \frac{1}{\epsilon^2}$$

Now if we let $\epsilon = v \frac{\sqrt{n}}{\sigma}$,

$$P(|\bar{X} - \mu| \ge v) \le \frac{\sigma^2}{nv^2}$$

Therefore, as $n \to \infty$, $P(|\bar{X} - \mu| \ge v) = 0$ for any v > 0, which is the Weak Law of Large Numbers.

5. Common families of statistical distributions

5.1. Multivariate Normal

We are already familiar with the one-dimensional Gaussian random variable $X \sim \mathcal{N}(\mu, \sigma^2)$, which has the pdf $f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}$ with the support over the entire real line.

The k-dimensional Gaussian random variable is described as:

$$X \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$$

X is a k-dimensional random vector. μ is a k-dimensional vector, Σ is a k-by-k symmetric matrix called the variance-covariance matrix. A matrix Σ is symmetric if $\Sigma^T = \Sigma$, as such Σ has $k + (k^2 - k)/2 = (k^2 + k)/2$ number of parameters. Intuitively, k diagonal terms of Σ describe the variances of each individual random variable, and $(k^2 - k)/2$ off-diagonal terms of Σ describe the pairwise correlations between each of the variable.

Therefore a k-dimensional Gaussian variable has $\frac{3k+k^2}{2}$ number of parameters. For example, a 2-dimensional multivariate Gaussian has 5 parameters.

For the bivariate Normal distribution:

$$\begin{pmatrix} X \\ Y \end{pmatrix} \sim N \begin{bmatrix} \begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix}, & \begin{pmatrix} \sigma_X^2 & \rho \sigma_X \sigma_Y \\ \rho \sigma_X \sigma_Y & \sigma_Y^2 \end{pmatrix} \end{bmatrix}$$

The pdf of (X,Y) is:

(6)
$$f(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_X)^2}{\sigma_X^2} + \frac{(y-\mu_Y)^2}{\sigma_Y^2} - \frac{2\rho(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y} \right] \right)$$

for $x, y \in \mathbb{R}^2$. Check that the marginal pdf of X is just the univariate Normal pdf:

¹In additional Σ also has to be positive semi-definite, that is, $\mathbf{x}^T \Sigma \mathbf{x} > 0$ for all $\mathbf{x} \in \mathbb{R}^k$.

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma_X^2}} e^{-\frac{(x-\mu_X)^2}{2\sigma_X^2}}, \quad x \in \mathbb{R}$$

$$f_Y(y) = \frac{1}{\sqrt{2\pi\sigma_Y^2}} e^{-\frac{(y-\mu_Y)^2}{2\sigma_Y^2}}, \quad y \in \mathbb{R}$$

Hence, the moments of (X,Y) are described by the parameters of the pdf, i.e. $\mathbb{E}[X] = \mu_X$, $\mathbb{E}[Y] = \mu_Y$, $\operatorname{Var}(X) = \sigma_X^2$, $\operatorname{Var}(Y) = \sigma_Y^2$.

In addition, we can compute $Cov(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$ from the joint pdf, which turns out to be $\rho\sigma_X\sigma_Y$. As such the correlation of X and Y is just ρ .

If we set $\rho = 0$, i.e. zero correlation between X and Y, then:

$$f(x,y) = f_X(x)f_Y(y)$$

Hence, for Multivariate Normals, zero correlation implies independence. Also, if X and Y are independent with univariate Normal distributions, then (X, Y) trivially has a bivariate Normal distribution.

However in general, if two random variables X and Y are univariate Normals, it is not true that (X,Y) has a bivariate Normal distribution. Can you work out an example?

The conditional distribution of Y given X = x is:

(7)
$$(Y|X=x) \sim \mathcal{N}\left(\mathbb{E}[Y] + \rho \frac{\sigma_Y}{\sigma_X}(x - \mathbb{E}[X]), (1 - \rho^2)\sigma_Y^2\right)$$

This implies that the conditional expectation of Y given X is:

$$\mathbb{E}[Y|X] = \mathbb{E}[Y] + \rho \frac{\sigma_Y}{\sigma_X} (X - \mathbb{E}[X])$$

It is a **linear** function of X and has a normal pdf. The fact that $\mathbb{E}[Y|X]$ is linear in X means that the best prediction of Y using X is some linear function of X. That is, we can't do better than a linear regression of Y on X if (Y,X) is a bivariate Normal.

The conditional variance of Y given X is $Var[Y|X] = (1 - \rho^2)\sigma_Y^2$, which does not depend on X.

In general, the joint density of a k-th dimensional multivariate Normal distribution is:

$$f_{\mathbf{X}}(x_1,\ldots,x_k) = \frac{\exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)}{\sqrt{(2\pi)^k|\boldsymbol{\Sigma}|}}$$

Where Σ is a k-by-k variance-covariance matrix of X, and μ is a k-dimensional vector. We say that $X \sim N(\mu, \Sigma)$.

5.2. Example

For example, let $\mu_X = \mu_Y = 0$ and $\sigma_X = \sigma_Y = 1$ in the joint pdf of Bivariate Normal (Equation 8). The location parameters μ_X and μ_Y merely shift the center of the distribution around. Then we have:

(8)
$$f(x,y) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left(-\frac{x^2+y^2-2\rho xy}{2(1-\rho^2)}\right)$$

Visualize this joint pdf at various values of ρ as in Figure 1.

FIGURE 1

Now we derive the conditional distribution of X given Y.

$$f_{X|Y=y}(x|y) = \frac{f(x,y)}{f(y)}$$

$$= \frac{\frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left(-\frac{x^2+y^2-2\rho xy}{2(1-\rho^2)}\right)}{\frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}}$$

$$= \frac{1}{\sqrt{2\pi}\sqrt{1-\rho^2}} \exp\left(-\frac{x^2+y^2-2\rho xy}{2(1-\rho^2)} + \frac{y^2}{2}\right)$$

$$= \frac{1}{\sqrt{2\pi}\sqrt{1-\rho^2}} \exp\left(-\frac{x^2+\rho^2 y^2-2\rho xy}{2(1-\rho^2)}\right)$$

$$= \frac{1}{\sqrt{2\pi}\sqrt{1-\rho^2}} \exp\left(-\frac{(x-\rho y)^2}{2(1-\rho^2)}\right)$$

The last line is the pdf of a univariate Normal distribution with mean ρy and variance $1 - \rho^2$. Therefore,

$$(X|Y=y) \sim N(\rho y, 1 - \rho^2)$$

Let's also check whether the joint pdf integrates to the marginal pdfs (which can be evaluated analytically by completing the squares):

$$\int_{-\infty}^{\infty} \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left(-\frac{x^2+y^2-2\rho xy}{2(1-\rho^2)}\right) dx$$

$$= \frac{\exp\left(\frac{-y^2}{2(1-\rho^2)}\right)}{2\pi\sqrt{1-\rho^2}} \int_{-\infty}^{\infty} \exp\left(-\frac{x^2-2\rho xy}{2(1-\rho^2)}\right) dx$$

$$= \frac{\exp\left(\frac{\rho^2 y^2 - y^2}{2(1-\rho^2)}\right)}{2\pi\sqrt{1-\rho^2}} \int_{-\infty}^{\infty} \exp\left(-\frac{(x-\rho y)^2}{2(1-\rho^2)}\right) dx$$

$$= \frac{\exp\left(\frac{-y^2}{2}\right)}{2\pi\sqrt{1-\rho^2}} \int_{-\infty}^{\infty} \exp\left(-\frac{(x-\rho y)^2}{2(1-\rho^2)}\right) dx$$

$$= \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}$$

5.3. Sampling from a multivariate Normal

To sample from a scalar random variable, we learned how to use the probability integral transform. We can use the conditional distribution to sample from a multivariate distribution. For instance, to sample from a bivariate Normal distribution:

$$\begin{pmatrix} X \\ Y \end{pmatrix} \sim N \begin{bmatrix} \begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix}, & \begin{pmatrix} \sigma_X^2 & \rho \sigma_X \sigma_Y \\ \rho \sigma_X \sigma_Y & \sigma_Y^2 \end{pmatrix} \end{bmatrix}$$

First, we sample from the marginal of X, which is just $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$.

Recall the conditional distribution of Y given X = x is:

$$(Y|X=x) \sim \mathcal{N}\left(\mathbb{E}[Y] + \rho \frac{\sigma_Y}{\sigma_X}(x - \mathbb{E}[X]), (1 - \rho^2)\sigma_Y^2\right)$$

For every draw of x_i from the marginal distribution $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$, we then sample y_i from $Y|X=x_i$. The sample $(x_i, y_i)_{i=1}^n$ will be a valid sample from the the bivariate Normal distribution.

This approach is called Gibbs Sampling.² More generally, to sample from a trivariate distribution f(x, y, z), we first draw x_i from the marginal of X, then draw y_i from $Y|X = x_i$, then finally, draw z_i from $Z|Y = y_i, X = x_i$. Now, the density of Z|Y, X can be derived as f(x, y, z)/f(x, y).

Let's try to implement Gibbs sampling using R or Python.

5.4. Beta distribution

Beta distribution is used to model random variables that lie within the unit interval [0, 1]. For example, if we want to model fractions or probabilities, then we use the Beta distribution.

The Beta distribution is controlled by two parameters $\alpha > 0$ and $\beta > 0$, that is, $X \sim Beta(\alpha, \beta)$.

The pdf is $f_X(x) \propto x^{\alpha-1}(1-x)^{\beta-1}$ for $x \in [0,1]$. The constant of proportionality is $\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$, where Γ is the Gamma function.³

²More specifically, this is the Collapsed Gibbs Sampling

³The Gamma function is an interesting function. It is defined as $\Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt$. The Gamma function satisfies the following recurrence relation: $\Gamma(z) = (z-1)\Gamma(z-1)$. As such, when z is an integer, $\Gamma(z) = (z-1)!$. We can think of the Gamma function as an extension of the factorial function to non-negative real numbers. For non-integers z > 1, it must be that $\Gamma(z) = (z-1)(z-2) \dots \delta\Gamma(\delta)$ where $0 < \delta < 1$.

The Beta distribution is a very flexible class of distributions that can generate distributions that are positively or negatively skewed, varying modes and medians. The mean is given by $\frac{\alpha}{\alpha+\beta}$.

The Dirichlet distribution generalizes the Beta distribution to multiple dimensions:

$$f(x_1, \dots, x_K; \alpha_1, \dots, \alpha_K) \propto \prod_{i=1}^K x_i^{\alpha_i - 1}$$

Where $\{x_k\}_{k=1}^{k=K}$ belong to the standard K-1 simplex, or in other words: $\sum_{i=1}^{K} x_i = 1$ and $x_i \geq 0$ for all $i \in \{1, \ldots, K\}$. The normalizing constant is the multivariate beta function, which can be expressed in terms of the gamma function

$$B(\boldsymbol{\alpha}) = \frac{\prod_{i=1}^{K} \Gamma(\alpha_i)}{\Gamma\left(\sum_{i=1}^{K} \alpha_i\right)}, \qquad \boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_K)$$

5.5. Gamma distribution

The Gamma distribution is used to model random variables that takes positive values. It is a general form of the Exponential distribution. It is also used in Bayesian statistics as conjugate priors. Moreover, it is used in the frequentist setting for hypothesis testing.

Let X_1, X_2, \ldots, X_n be n independent Exponential distribution with parameter λ . Then, $\sum_{i=1}^{n} X_i \sim \operatorname{Gamma}(n, \lambda)$. Therefore the Gamma distribution gives the duration it takes until n number of event occurrences, where the rate of an event occurrence is λ .

More generally, the Gamma distribution is a two-parameter distribution. $X \sim \text{Gamma}(\alpha, \beta)$ where X takes only positive real values and $\alpha, \beta > 0$. The pdf is given by $f(x) = \frac{\beta^{\alpha} x^{\alpha-1} e^{-x\beta}}{\Gamma(\alpha)}$ for $x \geq 0$.

If $X \sim \text{Gamma}(1,\lambda)$, then X has an exponential distribution with mean $\frac{1}{\lambda}$. If $X \sim \text{Gamma}(v/2,1/2)$, then X is identical to $\chi(v)$, the chi-squared distribution with v degrees of freedom.

5.6. Bernoulli and Binomial Distribution

X is a Bernoulli distribution with parameter p if X = 1 with probability p, and X = 0 with probability 1 - p.

Let $X_1, X_2, ..., X_n$ be n independent Bernoulli random variables with parameter p. $Y = \sum_{i=1}^{n} X_i$ is a Binomial distribution with parameters (n, p).

$$P(Y = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Y is the number of successes in n independent trials, where p is the probability of a success in a trial. The mean of Y is np, and the variance of Y is np(1-p), can you prove this?

6. A note on truncated random variables

Consider a random variable X with density $f_X(x)$. What is $\mathbb{E}[X|X>a]$? X>a is an event, not a random variable, so do not confuse with the formula for deriving conditional density. The density of X|X>a is $\frac{1}{1-F_X(a)}f_X(x)\mathbb{1}(x>a)$ with the support truncated to x>a. Note this density integrates to one.

In general, the density of $X|X \in (a,b)$ is $\frac{1}{F_X(b)-F_X(a)}f_X(x)\mathbb{1}(x \in (a,b))$ with the support truncated to $x \in (a,b)$. Note this density integrates to one as well.

Now let $X \sim U[0,1]$, and $a \in (0,1)$, what is $\mathbb{E}[X|X > a]$?

$$\mathbb{E}[X|X > a] = \frac{\mathbb{E}[X\mathbb{1}_{\{X > a\}}]}{1 - F_X(a)}$$

$$= \frac{\int_a^\infty x f_X(x) dx}{1 - F_X(a)}$$

$$= \frac{\int_a^1 x dx}{1 - a}$$

$$= \frac{\int_a^1 x dx}{1 - a}$$

$$= \frac{a + 1}{2} \quad \text{for } a \in (0, 1)$$

For instance, if $X \sim \mathcal{N}(0, \sigma^2)$, then we can use the above formula to show that $\mathbb{E}[X|X>0] \approx 0.7978\sigma$.

Now consider the random variables (X,Y) which are joint uniformly distributed on the unit square. That is, f(x,y) = 1 for 0 < x < 1 and 0 < y < 1. Show that $\mathbb{E}[X|Y > X] = \frac{1}{3}$. Note that Y > X is an event, not a random variable. As such, the formula to compute this conditional expectation is $\mathbb{E}[X|Y > X]$

 $X]=\frac{\mathbb{E}[X\mathbbm{1}_{\{Y>X\}}]}{P(Y>X)},$ and $not~\mathbb{E}[Y|X=x]=\int y\frac{f(x,y)}{f(x)}\,dy,$ which is the formula when conditioning on a random variable. In general, the density of $X|(X,Y)\in A$ is $\int_{-\infty}^{\infty}\frac{1}{\Pr((X,Y)\in A)}f_{X,Y}(x,y)\mathbbm{1}((x,y)\in A).$

$$\mathbb{E}[X|Y > X] = \frac{\mathbb{E}[X\mathbb{1}_{\{Y > X\}}]}{\Pr(Y > X)}$$

$$= \frac{\int_0^1 x \int_x^1 f_{X,Y}(x,y) \, dy \, dx}{1/2}$$

$$= \frac{\int_0^1 x (1-x) \, dx}{1/2}$$

$$= \frac{1}{3}$$