LECTURE 4: MULTIVARIATE RANDOM VARIABLES II

MECO 7312.
INSTRUCTOR: DR. KHAI CHIONG
SEPTEMBER 20, 2023

1. Important identities

1.1. Law of iterated expectations

$$
\mathbb{E}[Y]=\mathbb{E}[\mathbb{E}[Y \mid X]]
$$

Now $\mathbb{E}[Y \mid X]$ is a scalar random variable, and inhabits the same probability space as X. Therefore, the outer expectation on the right-hand side is taken with respect to $f_{X}(x)$.

$$
\begin{gathered}
\mathbb{E}[Y \mid X=x]=\int_{-\infty}^{\infty} y f_{Y \mid X=x}(y \mid x) d y \\
=g(x) \\
\mathbb{E}[\mathbb{E}[Y \mid X]]=\mathbb{E}[g(X)] \\
=\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} y f_{Y \mid X}(y \mid x) d y\right) f(x) d x
\end{gathered}
$$

Intuitively, suppose we use realizations of the variable X to predict Y. Then the average of the predicted values over X equals to the average of Y.

Example:

Recall the pdf $f(x, y)=x+y$ with the support on $\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq x \leq 1,0 \leq\right.$ $y \leq 1\}$. Previously, we found that:

$$
\mathbb{E}[Y \mid X]=\frac{2+3 X}{3+6 X}
$$

Therefore,

$$
\begin{aligned}
\mathbb{E}[\mathbb{E}[Y \mid X]] & =\int \frac{2+3 x}{3+6 x} f_{X}(x) d x \\
& =\int_{0}^{1} \frac{2+3 x}{3+6 x}\left(\frac{1}{2}+x\right) d x \\
& =\left.\frac{1}{6}\left(\frac{3 x^{2}}{2}+2 x\right)\right|_{0} ^{1} \\
& =\frac{7}{12} \\
& =\mathbb{E}[Y]
\end{aligned}
$$

1.2. Important properties of conditional expectations

This section is adapted from Chapter 2 of "Econometric Analysis of Cross Section and Panel Data" by Jeffrey M. Wooldridge.
Let Y, W be random variables. Let X be the random variable such that $X=g(W)$, for some function g.

Comparing $\mathbb{E}[Y \mid W]$ and $\mathbb{E}[Y \mid X]$, we can think of $\mathbb{E}[Y \mid X]$ as conditioning on a set of events that is a subset of the set of events being conditioned on in $\mathbb{E}[Y \mid W]$. Because if we know the outcome of W, then we would know X, but the converse is not true.

$$
\begin{align*}
& \mathbb{E}[\mathbb{E}[Y \mid X] \mid W]=\mathbb{E}[Y \mid X] \tag{1}\\
& \mathbb{E}[\mathbb{E}[Y \mid W] \mid X]=\mathbb{E}[Y \mid X] \tag{2}
\end{align*}
$$

A phrase useful for remembering both equations above: "The smaller information set always dominates". This is also known as the Tower Property of conditional expectations, which can be demonstrated more formally with measure-theoretic notations.

Some consequences of this useful property:

$$
\begin{align*}
\mathbb{E}\left[\mathbb{E}[Y \mid X] \mid X^{2}\right] & =\mathbb{E}\left[\mathbb{E}\left[Y \mid X^{2}\right] \mid X\right]=\mathbb{E}\left[Y \mid X^{2}\right] \tag{3}\\
\mathbb{E}[\mathbb{E}[Y \mid X, Z] \mid X] & =\mathbb{E}[\mathbb{E}[Y \mid X] \mid X, Z]=\mathbb{E}[Y \mid X] \tag{4}
\end{align*}
$$

1.3. Conditional variance identity

$$
\operatorname{Var}(Y)=\mathbb{E}[\operatorname{Var}(Y \mid X)]+\operatorname{Var}(\mathbb{E}[Y \mid X])
$$

$\mathbb{E}[Y \mid X]$ and $\operatorname{Var}(Y \mid X)$ are each scalar random variable that is a transformation of X and has the same probability space as X. Therefore, the expectation and variance on the right-hand side is taken with respect to the pdf $f_{X}(x)$.

Example:

Using the same example as before, we have the pdf $f(x, y)=x+y$ with the support on $\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq x \leq 1,0 \leq y \leq 1\right\}$.

$$
\begin{aligned}
\mathbb{E}[Y \mid X] & =\frac{2+3 X}{3+6 X} \\
\operatorname{Var}(\mathbb{E}[Y \mid X]) & =\mathbb{E}\left[(\mathbb{E}[Y \mid X])^{2}\right]-(\mathbb{E}[\mathbb{E}[Y \mid X]])^{2} \\
& =\int_{0}^{1}\left(\frac{2+3 x}{3+6 x}\right)^{2} f_{X}(x) d x-\mathbb{E}[Y]^{2} \\
& =\int_{0}^{1}\left(\frac{2+3 x}{3+6 x}\right)^{2}\left(\frac{1}{2}+x\right) d x-\left(\frac{7}{12}\right)^{2} \\
& =\frac{1}{288}(96+\log (9))-\frac{49}{144}
\end{aligned}
$$

We can derive $\operatorname{Var}(Y \mid X)$ by:

$$
\begin{aligned}
\operatorname{Var}[Y \mid X=x] & =\mathbb{E}\left[Y^{2} \mid X=x\right]-(\mathbb{E}[Y \mid X=x])^{2} \\
& =\int_{0}^{1} y^{2} f_{Y \mid X=x}(y \mid x) d y-(\mathbb{E}[Y \mid X=x])^{2} \\
& =\int_{0}^{1} y^{2} \frac{2(x+y)}{1+2 x} d y-\left(\frac{2+3 x}{3+6 x}\right)^{2} \\
& =\frac{4 x+3}{12 x+6}-\left(\frac{2+3 x}{3+6 x}\right)^{2} \\
& =\frac{1}{36}\left(3-\frac{1}{(2 x+1)^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E}[\operatorname{Var}[Y \mid X]] & =\int_{0}^{1} \frac{1}{36}\left(3-\frac{1}{(2 x+1)^{2}}\right) f_{X}(x) d x \\
& =\frac{1}{144}(12-\log (3))
\end{aligned}
$$

Therefore, $\mathbb{E}[\operatorname{Var}[Y \mid X]]+\operatorname{Var}(\mathbb{E}[Y \mid X])=\frac{11}{144}=\operatorname{Var}(Y)$.

2. Example: putting everything together

Suppose X and Y are distributed uniformly on the triangle $(0,0),(0,1),(1,0)$. That is:

$$
f_{X, Y}(x, y)= \begin{cases}2 & \text { if } 0 \leq x \leq 1,0 \leq y \leq 1, x+y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

1.) Is this a valid pdf?

$$
\int_{0}^{1} \int_{0}^{1-y} 2 d x d y
$$

Performing the inner integral first with respect to x :

$$
\begin{aligned}
& \int_{0}^{1}[2 x]_{0}^{1-y} d x=\int_{0}^{1} 2(1-y) d y \\
& =2\left[y-\frac{y^{2}}{2}\right]_{0}^{1}=2\left(1-\frac{1}{2}\right)=1
\end{aligned}
$$

2.) Derive the marginal pdfs.

$$
\begin{aligned}
& f_{X}(x)=\int_{0}^{1-x} 2 d y=2(1-x) \text { for } x \in[0,1] \\
& f_{Y}(y)=\int_{0}^{1-y} 2 d y=2(1-y) \text { for } y \in[0,1]
\end{aligned}
$$

3.) Calculate $\operatorname{Cov}(X, Y)$
$\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$

$$
\mathbb{E}[X]=\int_{0}^{1} 2(1-x) x d x=\frac{1}{3}
$$

$$
\begin{aligned}
\mathbb{E}[Y] & =\int_{0}^{1} 2(1-y) y d y=\frac{1}{3} \\
\mathbb{E}[X Y] & =\iint x y f(x, y) d x d y \\
& =\int_{0}^{1} \int_{0}^{1-y} 2 x y d x d y \\
& =\int_{0}^{1}\left[x^{2} y\right]_{0}^{1-y} d y \\
& =\int_{0}^{1}(1-y)^{2} y d y \\
& =\left[\frac{y^{2}}{2}-\frac{2 y^{3}}{3}+\frac{y^{4}}{4}\right]_{0}^{1} \\
& =\frac{1}{12}
\end{aligned}
$$

Hence $\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]=\frac{1}{12}-\left(\frac{1}{3}\right)\left(\frac{1}{3}\right)=-\frac{1}{36}$
4.) Calculate $P(Y \leq 1-2 X)$:

$$
\begin{aligned}
P(Y \leq 1-2 X) & =\int_{0}^{1 / 2} \int_{0}^{1-2 x} f(x, y) d y d x \\
& =\int_{0}^{1 / 2} 2-4 x d x \\
& =\left[2 x-2 x^{2}\right]_{0}^{1 / 2} \\
& =\frac{1}{2}
\end{aligned}
$$

5.) Derive $\mathbb{E}[Y \mid X=x]$ and $\operatorname{Var}(Y \mid X=x)$:

First, the density of $Y \mid X=x$:

$$
f_{Y \mid X=x}(y \mid x)=\frac{f(x, y)}{f(x)}=\frac{2}{2(1-x)}, \text { for } 0 \leq x \leq 1,0 \leq y \leq 1, x+y \leq 1
$$

Conditional expectation:

$$
\mathbb{E}(Y \mid X=x)=\int_{0}^{1-x} y f_{Y \mid X=x}(y \mid x) d y=\int_{0}^{1-x} \frac{y}{(1-x)} d y=\frac{1-x}{2}
$$

Conditional variance:

$$
\begin{aligned}
\operatorname{Var}(Y \mid X=x) & =\mathbb{E}\left[Y^{2} \mid X=x\right]-\mathbb{E}[Y \mid X=x]^{2} \\
& =\int_{0}^{1-x} y^{2} f_{Y \mid X=x}(y \mid x) d y-\left(\frac{1-x}{2}\right)^{2} \\
& =\frac{1}{3}(1-x)^{2}-\left(\frac{1-x}{2}\right)^{2} \\
& =\frac{1}{12}(1-x)^{2}
\end{aligned}
$$

6.) Derive $\operatorname{Var}(\mathbb{E}[Y \mid X])$ and $\mathbb{E}[\operatorname{Var}(Y \mid X)]$:

$$
\begin{aligned}
\operatorname{Var}(\mathbb{E}[Y \mid X]) & =\mathbb{E}\left[(\mathbb{E}[Y \mid X])^{2}\right]-\mathbb{E}[\mathbb{E}[Y \mid X]]^{2} \\
& =\int_{0}^{1}\left(\frac{1-x}{2}\right)^{2} 2(1-x) d x-\mathbb{E}[Y]^{2} \\
& =\frac{1}{8}-\frac{1}{9} \\
& =\frac{1}{72}
\end{aligned}
$$

Alternatively,

$$
\begin{aligned}
\operatorname{Var}(\mathbb{E}[Y \mid X]) & =\operatorname{Var}\left(\frac{1-X}{2}\right) \\
& =\frac{1}{4} \operatorname{Var}(X) \\
& =\frac{1}{4}\left(\int x^{2} 2(1-x) d x-\mathbb{E}[X]^{2}\right) \\
& =\frac{1}{4}\left(\frac{1}{6}-\frac{1}{9}\right) \\
& =\frac{1}{4} \times \frac{1}{18}=\frac{1}{72}
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E}(\operatorname{Var}[Y \mid X]) & =\int_{0}^{1} \frac{1}{12}(1-x)^{2} \cdot 2(1-x) d x \\
& =\frac{1}{24}
\end{aligned}
$$

Indeed, we see that the Conditional Variance Identity holds true here. $\operatorname{Var}(Y)=$ $\mathbb{E}[\operatorname{Var}(Y \mid X)]+\operatorname{Var}(\mathbb{E}[Y \mid X])$, where $\operatorname{Var}(Y)=\int_{0}^{1} y^{2} 2(1-y) d y-\frac{1}{9}=\frac{1}{18}$.

3. Transformation of bivariate random variables

Let (X, Y) be a bivariate random vector. Consider a new bivariate random vector (U, V) defined by $U=g_{1}(X, Y), V=g_{2}(X, Y)$. What is the probability distribution of (U, V) ?

Let \mathcal{A} denote the support of the (X, Y), i.e. $\mathcal{A}=\left\{(x, y) \in \mathbb{R}^{2}: f_{X, Y}(x, y)>\right.$ $0\}$.
The transformation is $U=g_{1}(X, Y)$ and $V=g_{2}(X, Y)$. The support of (U, V) is then $\mathcal{B}=\left\{(u, v) \in \mathbb{R}^{2}: u=g_{1}(x, y), v=g_{2}(x, y)\right.$ for some $\left.(x, y) \in \mathcal{A}\right\}$.
Assume that g_{1} and g_{2} are functions such that the relationship between \mathcal{A} and \mathcal{B} is one-to-one and onto (a bijection). For each $(u, v) \in \mathcal{B}$, there is only one $(x, y) \in \mathcal{A}$ such that $u=g_{1}(x, y)$ and $v=g_{2}(x, y)$.

As such, we can solve the equations $u=g_{1}(x, y)$ and $v=g_{2}(x, y)$ in terms of x and y. That is, there is an inverse transformation such that $x=h_{1}(u, v)$ and $y=h_{2}(u, v)$, where h_{1} and h_{2} are differentiable functions.

Define the Jacobian matrix:

$$
\mathbf{J}=\left[\begin{array}{cc}
\frac{\partial h_{1}}{\partial u} & \frac{\partial h_{1}}{\partial v} \\
\frac{\partial h_{2}}{\partial u} & \frac{\partial h_{2}}{\partial v}
\end{array}\right]
$$

The determinant of the Jacobian matrix is:

$$
J=\operatorname{det}(\mathbf{J})=\left|\begin{array}{cc}
\frac{\partial h_{1}}{\partial u} & \frac{\partial h_{1}}{\partial v} \\
\frac{\partial h_{2}}{\partial u} & \frac{\partial h_{2}}{\partial v}
\end{array}\right|
$$

That is, $J=\frac{\partial h_{1}}{\partial u} \frac{\partial h_{2}}{\partial v}-\frac{\partial h_{1}}{\partial v} \frac{\partial h_{2}}{\partial u}$.
The joint pdf of (U, V) is:

$$
f_{U, V}(u, v)= \begin{cases}f_{X, Y}\left(h_{1}(u, v), h_{2}(u, v)\right)|J| & \text { for }(u, v) \in \mathcal{B} \\ 0 \quad \text { otherwise } & \end{cases}
$$

$|\operatorname{det}(\mathbf{J})|$ is often called the Jacobian, or the Jacobian of the transformation, or the Jacobian determinant. Note that $\operatorname{det}(\mathbf{J})$ is a function of u, v. Moreover, $\operatorname{det}(\boldsymbol{J}) \neq 0$ since there is an inverse transformation such that $x=h_{1}(u, v)$ and $y=h_{2}(u, v)$, where h_{1} and h_{2} are differentiable functions. The Jacobian is also used during change-of-variables in multiple integrals.

3.1. Example

Let X and Y be independent, standard Normal random variables.
Consider the transformation $U=X+Y$ and $V=X-Y$. What is the joint pdf of (U, V) ?
The joint pdf of (X, Y) is just $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)=\frac{1}{2 \pi} e^{-\frac{x^{2}}{2}} e^{-\frac{y^{2}}{2}}$ since X and Y are independent.

The support of (X, Y) is \mathbb{R}^{2}. It follows that U and V can also take any value from $-\infty$ to ∞.

The inverse transformation is $x=h_{1}(u, v)=\frac{u+v}{2}$ and $y=h_{2}(u, v)=\frac{u-v}{2}$.
The Jacobian of the transformation is:

$$
J=\left|\begin{array}{cc}
\frac{\partial h_{1}}{\partial u} & \frac{\partial h_{1}}{\partial v} \\
\frac{\partial h_{2}}{\partial u} & \frac{\partial h_{2}}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right|=-\frac{1}{2}
$$

Hence the joint pdf of (U, V) is:

$$
\begin{aligned}
f_{U, V}(u, v) & =f_{X, Y}\left(h_{1}(u, v), h_{2}(u, v)\right)|J| \\
& =\frac{1}{2 \pi} e^{-\frac{(u+v)^{2}}{2}} e^{-\frac{\left(\frac{u-v}{2}\right)^{2}}{2}} \frac{1}{2} \\
& =\left(\frac{1}{\sqrt{2 \pi} \sqrt{2}} e^{-\frac{u^{2}}{4}}\right)\left(\frac{1}{\sqrt{2 \pi} \sqrt{2}} e^{-\frac{v^{2}}{4}}\right)
\end{aligned}
$$

Note that the pdf of $N\left(\mu, \sigma^{2}\right)$ is $\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$.

Hence the joint pdf of (U, V) can be factored into two functions $f_{U}(u)$ and $f_{V}(v)$. Moreover, $f_{U}(u)$ is the pdf of $N(0,2)$. That is, $U \sim N(0,2)$ and $V \sim N(0,2)$. The sum (U) and difference (V) of independent normal random variables are independent normal random variables, as long as $\operatorname{Var}(X)=\operatorname{Var}(Y)$.

We can also consider the ratio and the product of Normal variables. Consider the transformation $U=X / Y$ and $V=X$. What is the joint pdf of (U, V) ? What about the product $V=X Y$?

3.2. Discrete bivariate random vectors

Let (X, Y) be a a discrete bivariate random vector. Let \mathcal{A} be the support of (X, Y), i.e. the set of points where the joint pmf of (X, Y) takes strictly positive values. Note that \mathcal{A} must be a countable set (either finite or countably infinite).

The joint pmf of (U, V) is:

$$
f_{U, V}(u, v)=P(U=v, V=v)=\sum_{(x, y) \in \mathcal{A}: g_{1}(x, y)=u, g_{2}(x, y)=v} f_{X, Y}(x, y)
$$

4. Some important inequalities

4.1. Jensen's Inequality

A function $g(x)$ is convex if and only if $\lambda g(x)+(1-\lambda) g(y) \geq g(\lambda x+(1-\lambda) y)$ for $0<\lambda<1$. Graphically, a straight line connecting any two points of the convex function lies above the function.

Jensen's Inequality: For any random variable X, if $g(X)$ is convex, then $\mathbb{E}[g(X)] \geq$ $g(\mathbb{E}[X])$.

For example: take $g(X)=X^{2}$, then $\mathbb{E}\left[X^{2}\right] \geq(\mathbb{E}[X])^{2}$, which implies that $\mathbb{E}\left[X^{2}\right]-$ $(\mathbb{E}[X])^{2} \geq 0$.

4.2. Concentration inequalities (Markov and Chebychev's Inequalities)

Concentration inequalities provide bounds on the probabilities of a random variable deviating from a certain value. Markov's inequality and Chebyshev's inequality are examples of concentration inequalities. Let X be a random variable and $g(X)$ be a non-negative function. Chebyshev's inequality: for any $\epsilon>0$,

$$
P(g(X) \geq \epsilon) \leq \frac{\mathbb{E}[g(X)]}{\epsilon}
$$

Proof:

$$
\begin{aligned}
\mathbb{E}[g(X)] & =\int_{-\infty}^{\infty} g(x) f(x) d x \\
& \geq \int_{x: g(x) \geq \epsilon}^{\infty} g(x) f(x) d x \\
& \geq \int_{x: g(x) \geq \epsilon}^{\infty} \epsilon f(x) d x \\
& =\epsilon P(g(X) \geq \epsilon)
\end{aligned}
$$

Markov's inequality is just $P(X \geq \epsilon) \leq \frac{\mathbb{E}[X]}{\epsilon}$.
Now let $g(x)=\frac{(x-\mu)^{2}}{\sigma^{2}} \geq 0$, where $\mu=\mathbb{E}[X]$ and $\sigma^{2}=\operatorname{Var}(X)$. Note that g is always positive. By the Chebyshev's inequality,

$$
\begin{align*}
& P\left(g(X) \geq \epsilon^{2}\right) \leq \frac{\mathbb{E}[g(X)]}{\epsilon^{2}} \\
& P\left(\frac{(X-\mu)^{2}}{\sigma^{2}} \geq \epsilon^{2}\right) \leq \frac{\mathbb{E}\left[\frac{(X-\mu)^{2}}{\sigma^{2}}\right]}{\epsilon^{2}} \\
& P\left(\frac{(X-\mu)^{2}}{\sigma^{2}} \geq \epsilon^{2}\right) \leq \frac{1}{\epsilon^{2}} \\
& P(|X-\mu| \geq \epsilon \sigma) \leq \frac{1}{\epsilon^{2}} \tag{5}
\end{align*}
$$

If we take $\epsilon=2$, then $P(|x-\mu| \geq 2 \sigma) \leq 0.25$ or $P(|x-\mu|<2 \sigma)>0.75$. That is, there is at least 75% chance that a random variable (any random variable!) will be within 2 standard deviation of its mean.
In general, the Chebyshev's inequality can be used to show that as $\operatorname{Var}\left(X_{n}\right) \rightarrow 0$, $P\left(\left|X_{n}-\mu\right| \geq \epsilon\right) \rightarrow 0$, by taking $g(X)=(X-\mu)^{2}$.

As such, Chebyshev's inequality can be used to prove the Weak Law of Large Numbers. Let X_{1}, \ldots, X_{n} be n independent random variables, each with the same density f. Define the sample mean as the random variable $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$. Note that \bar{X} has expectation $\mathbb{E}[X] \equiv \mu$, and variance $\frac{\operatorname{Var}(X)}{n} \equiv \frac{\sigma^{2}}{n}$.
By the inequality in (5), we have:

$$
P\left(|\bar{X}-\mu| \geq \epsilon \frac{\sigma}{\sqrt{n}}\right) \leq \frac{1}{\epsilon^{2}}
$$

Now if we let $\epsilon=v \frac{\sqrt{n}}{\sigma}$,

$$
P(|\bar{X}-\mu| \geq v) \leq \frac{\sigma^{2}}{n v^{2}}
$$

Therefore, as $n \rightarrow \infty, P(|\bar{X}-\mu| \geq v)=0$ for any $v>0$, which is the Weak Law of Large Numbers.

5. Common families of statistical distributions

5.1. Multivariate Normal

We are already familiar with the one-dimensional Gaussian random variable $X \sim$ $\mathcal{N}\left(\mu, \sigma^{2}\right)$, which has the pdf $f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$ with the support over the entire real line.

The k-dimensional Gaussian random variable is described as:

$$
\boldsymbol{X} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)
$$

\boldsymbol{X} is a k-dimensional random vector. $\boldsymbol{\mu}$ is a k-dimensional vector, Σ is a k-by- k symmetric matrix called the variance-covariance matrix. A matrix Σ is symmetric if $\Sigma^{T}=\Sigma$, as such Σ has $k+\left(k^{2}-k\right) / 2=\left(k^{2}+k\right) / 2$ number of parameters. Intuitively, k diagonal terms of Σ describe the variances of each individual random variable, and $\left(k^{2}-k\right) / 2$ off-diagonal terms of Σ describe the pairwise correlations between each of the variable. ${ }^{1}$
Therefore a k-dimensional Gaussian variable has $\frac{3 k+k^{2}}{2}$ number of parameters. For example, a 2-dimensional multivariate Gaussian has 5 parameters.

For the bivariate Normal distribution:

$$
\binom{X}{Y} \sim N\left[\binom{\mu_{X}}{\mu_{Y}}, \quad\left(\begin{array}{cc}
\sigma_{X}^{2} & \rho \sigma_{X} \sigma_{Y} \\
\rho \sigma_{X} \sigma_{Y} & \sigma_{Y}^{2}
\end{array}\right)\right]
$$

The pdf of (X, Y) is:

$$
\begin{equation*}
f(x, y)=\frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho^{2}}} \exp \left(-\frac{1}{2\left(1-\rho^{2}\right)}\left[\frac{\left(x-\mu_{X}\right)^{2}}{\sigma_{X}^{2}}+\frac{\left(y-\mu_{Y}\right)^{2}}{\sigma_{Y}^{2}}-\frac{2 \rho\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right)}{\sigma_{X} \sigma_{Y}}\right]\right) \tag{6}
\end{equation*}
$$

for $x, y \in \mathbb{R}^{2}$. Check that the marginal pdf of X is just the univariate Normal pdf:

[^0]\[

$$
\begin{aligned}
& f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma_{X}^{2}}} e^{-\frac{\left(x-\mu_{X}\right)^{2}}{2 \sigma_{X}^{2}}}, \quad x \in \mathbb{R} \\
& f_{Y}(y)=\frac{1}{\sqrt{2 \pi \sigma_{Y}^{2}}} e^{-\frac{\left(y-\mu_{Y}\right)^{2}}{2 \sigma_{Y}^{2}}}, \quad y \in \mathbb{R}
\end{aligned}
$$
\]

Hence, the moments of (X, Y) are described by the parameters of the pdf, i.e. $\mathbb{E}[X]=\mu_{X}, \mathbb{E}[Y]=\mu_{Y}, \operatorname{Var}(X)=\sigma_{X}^{2}, \operatorname{Var}(Y)=\sigma_{Y}^{2}$.
In addition, we can compute $\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$ from the joint pdf, which turns out to be $\rho \sigma_{X} \sigma_{Y}$. As such the correlation of X and Y is just ρ.
If we set $\rho=0$, i.e. zero correlation between X and Y, then:

$$
f(x, y)=f_{X}(x) f_{Y}(y)
$$

Hence, for Multivariate Normals, zero correlation implies independence. Also, if X and Y are independent with univariate Normal distributions, then (X, Y) trivially has a bivariate Normal distribution.

However in general, if two random variables X and Y are univariate Normals, it is not true that (X, Y) has a bivariate Normal distribution. Can you work out an example?

The conditional distribution of Y given $X=x$ is:

$$
\begin{equation*}
(Y \mid X=x) \sim \mathcal{N}\left(\mathbb{E}[Y]+\rho \frac{\sigma_{Y}}{\sigma_{X}}(x-\mathbb{E}[X]),\left(1-\rho^{2}\right) \sigma_{Y}^{2}\right) \tag{7}
\end{equation*}
$$

This implies that the conditional expectation of Y given X is:

$$
\mathbb{E}[Y \mid X]=\mathbb{E}[Y]+\rho \frac{\sigma_{Y}}{\sigma_{X}}(X-\mathbb{E}[X])
$$

It is a linear function of X and has a normal pdf. The fact that $\mathbb{E}[Y \mid X]$ is linear in X means that the best prediction of Y using X is some linear function of X. That is, we can't do better than a linear regression of Y on X if (Y, X) is a bivariate Normal.

The conditional variance of Y given X is $\operatorname{Var}[Y \mid X]=\left(1-\rho^{2}\right) \sigma_{Y}^{2}$, which does not depend on X.

In general, the joint density of a k-th dimensional multivariate Normal distribution is:

$$
f_{\mathbf{X}}\left(x_{1}, \ldots, x_{k}\right)=\frac{\exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)}{\sqrt{(2 \pi)^{k}|\boldsymbol{\Sigma}|}}
$$

Where $\boldsymbol{\Sigma}$ is a k-by- k variance-covariance matrix of \boldsymbol{X}, and $\boldsymbol{\mu}$ is a k-dimensional vector. We say that $\boldsymbol{X} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

5.2. Example

For example, let $\mu_{X}=\mu_{Y}=0$ and $\sigma_{X}=\sigma_{Y}=1$ in the joint pdf of Bivariate Normal (Equation 8). The location parameters μ_{X} and μ_{Y} merely shift the center of the distribution around. Then we have:

$$
\begin{equation*}
f(x, y)=\frac{1}{2 \pi \sqrt{1-\rho^{2}}} \exp \left(-\frac{x^{2}+y^{2}-2 \rho x y}{2\left(1-\rho^{2}\right)}\right) \tag{8}
\end{equation*}
$$

Visualize this joint pdf at various values of ρ as in Figure 1.

Plot3D[ReplaceAll $\left[\frac{1}{2 \pi \sqrt{ }\left(1-\rho^{2}\right)} \operatorname{Exp}\left[-\frac{x^{2}+y^{2}-2 \rho x y}{2\left(1-\rho^{2}\right)}\right], \rho \rightarrow 0.75\right],\{x,-2,2\}$,

$$
\{y,-2,2\}]
$$

$\operatorname{Plot3D}\left[\operatorname{ReplaceAll}\left[\frac{1}{2 \pi \sqrt{ }\left(1-\rho^{2}\right)} \operatorname{Exp}\left[-\frac{x^{2}+y^{2}-2 \rho x y}{2\left(1-\rho^{2}\right)}\right], \rho \rightarrow 0\right],\{x,-2,2\},\{y,-2,2\}\right]$

Figure 1

Now we derive the conditional distribution of X given Y.

$$
\begin{aligned}
f_{X \mid Y=y}(x \mid y) & =\frac{f(x, y)}{f(y)} \\
& =\frac{\frac{1}{2 \pi \sqrt{1-\rho^{2}}} \exp \left(-\frac{x^{2}+y^{2}-2 \rho x y}{2\left(1-\rho^{2}\right)}\right)}{\frac{1}{\sqrt{2 \pi}} e^{-\frac{y^{2}}{2}}} \\
& =\frac{1}{\sqrt{2 \pi} \sqrt{1-\rho^{2}}} \exp \left(-\frac{x^{2}+y^{2}-2 \rho x y}{2\left(1-\rho^{2}\right)}+\frac{y^{2}}{2}\right) \\
& =\frac{1}{\sqrt{2 \pi} \sqrt{1-\rho^{2}}} \exp \left(-\frac{x^{2}+\rho^{2} y^{2}-2 \rho x y}{2\left(1-\rho^{2}\right)}\right) \\
& =\frac{1}{\sqrt{2 \pi} \sqrt{1-\rho^{2}}} \exp \left(-\frac{(x-\rho y)^{2}}{2\left(1-\rho^{2}\right)}\right)
\end{aligned}
$$

The last line is the pdf of a univariate Normal distribution with mean ρy and variance $1-\rho^{2}$. Therefore,

$$
(X \mid Y=y) \sim N\left(\rho y, 1-\rho^{2}\right)
$$

Let's also check whether the joint pdf integrates to the marginal pdfs (which can be evaluated analytically by completing the squares):

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{1}{2 \pi \sqrt{1-\rho^{2}}} \exp \left(-\frac{x^{2}+y^{2}-2 \rho x y}{2\left(1-\rho^{2}\right)}\right) d x \\
& =\frac{\exp \left(\frac{-y^{2}}{2\left(1-\rho^{2}\right.}\right)}{2 \pi \sqrt{1-\rho^{2}}} \int_{-\infty}^{\infty} \exp \left(-\frac{x^{2}-2 \rho x y}{2\left(1-\rho^{2}\right)}\right) d x \\
& =\frac{\exp \left(\frac{\rho^{2} y^{2}-y^{2}}{2\left(1-\rho^{2}\right)}\right)}{2 \pi \sqrt{1-\rho^{2}}} \int_{-\infty}^{\infty} \exp \left(-\frac{(x-\rho y)^{2}}{2\left(1-\rho^{2}\right)}\right) d x \\
& =\frac{\exp \left(\frac{-y^{2}}{2}\right)}{2 \pi \sqrt{1-\rho^{2}}} \int_{-\infty}^{\infty} \exp \left(-\frac{(x-\rho y)^{2}}{2\left(1-\rho^{2}\right)}\right) d x \\
& =\frac{1}{\sqrt{2 \pi}} e^{-\frac{y^{2}}{2}}
\end{aligned}
$$

5.3. Sampling from a multivariate Normal

To sample from a scalar random variable, we learned how to use the probability integral transform. We can use the conditional distribution to sample from a multivariate distribution. For instance, to sample from a bivariate Normal distribution:

$$
\binom{X}{Y} \sim N\left[\binom{\mu_{X}}{\mu_{Y}}, \quad\left(\begin{array}{cc}
\sigma_{X}^{2} & \rho \sigma_{X} \sigma_{Y} \\
\rho \sigma_{X} \sigma_{Y} & \sigma_{Y}^{2}
\end{array}\right)\right]
$$

First, we sample from the marginal of X, which is just $X \sim \mathcal{N}\left(\mu_{X}, \sigma_{X}^{2}\right)$.
Recall the conditional distribution of Y given $X=x$ is:

$$
(Y \mid X=x) \sim \mathcal{N}\left(\mathbb{E}[Y]+\rho \frac{\sigma_{Y}}{\sigma_{X}}(x-\mathbb{E}[X]),\left(1-\rho^{2}\right) \sigma_{Y}^{2}\right)
$$

For every draw of x_{i} from the marginal distribution $X \sim \mathcal{N}\left(\mu_{X}, \sigma_{X}^{2}\right)$, we then sample y_{i} from $Y \mid X=x_{i}$. The sample $\left(x_{i}, y_{i}\right)_{i=1}^{n}$ will be a valid sample from the the bivariate Normal distribution.

This approach is called Gibbs Sampling. ${ }^{2}$ More generally, to sample from a trivariate distribution $f(x, y, z)$, we first draw x_{i} from the marginal of X, then draw y_{i} from $Y \mid X=x_{i}$, then finally, draw z_{i} from $Z \mid Y=y_{i}, X=x_{i}$. Now, the density of $Z \mid Y, X$ can be derived as $f(x, y, z) / f(x, y)$.

Let's try to implement Gibbs sampling using R or Python.

5.4. Beta distribution

Beta distribution is used to model random variables that lie within the unit interval $[0,1]$. For example, if we want to model fractions or probabilities, then we use the Beta distribution.

The Beta distribution is controlled by two parameters $\alpha>0$ and $\beta>0$, that is, $X \sim \operatorname{Beta}(\alpha, \beta)$.
The pdf is $f_{X}(x) \propto x^{\alpha-1}(1-x)^{\beta-1}$ for $x \in[0,1]$. The constant of proportionality is $\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}$, where Γ is the Gamma function. ${ }^{3}$

[^1]The Beta distribution is a very flexible class of distributions that can generate distributions that are positively or negatively skewed, varying modes and medians. The mean is given by $\frac{\alpha}{\alpha+\beta}$.
The Dirichlet distribution generalizes the Beta distribution to multiple dimensions:

$$
f\left(x_{1}, \ldots, x_{K} ; \alpha_{1}, \ldots, \alpha_{K}\right) \propto \prod_{i=1}^{K} x_{i}^{\alpha_{i}-1}
$$

Where $\left\{x_{k}\right\}_{k=1}^{k=K}$ belong to the standard $K-1$ simplex, or in other words: $\sum_{i=1}^{K} x_{i}=1$ and $x_{i} \geq 0$ for all $i \in\{1, \ldots, K\}$. The normalizing constant is the multivariate beta function, which can be expressed in terms of the gamma function

$$
\mathrm{B}(\boldsymbol{\alpha})=\frac{\prod_{i=1}^{K} \Gamma\left(\alpha_{i}\right)}{\Gamma\left(\sum_{i=1}^{K} \alpha_{i}\right)}, \quad \boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{K}\right)
$$

5.5. Gamma distribution

The Gamma distribution is used to model random variables that takes positive values. It is a general form of the Exponential distribution. It is also used in Bayesian statistics as conjugate priors. Moreover, it is used in the frequentist setting for hypothesis testing.

Let $X_{1}, X_{2}, \ldots, X_{n}$ be n independent Exponential distribution with parameter λ. Then, $\sum_{i=1}^{n} X_{i} \sim \operatorname{Gamma}(n, \lambda)$. Therefore the Gamma distribution gives the duration it takes until n number of event occurrences, where the rate of an event occurrence is λ.

More generally, the Gamma distribution is a two-parameter distribution. $X \sim$ $\operatorname{Gamma}(\alpha, \beta)$ where X takes only positive real values and $\alpha, \beta>0$. The pdf is given by $f(x)=\frac{\beta^{\alpha} x^{\alpha-1} e^{-x \beta}}{\Gamma(\alpha)}$ for $x \geq 0$.
If $X \sim \operatorname{Gamma}(1, \lambda)$, then X has an exponential distribution with mean $\frac{1}{\lambda}$. If $X \sim \operatorname{Gamma}(v / 2,1 / 2)$, then X is identical to $\chi(v)$, the chi-squared distribution with v degrees of freedom.

5.6. Bernoulli and Binomial Distribution

X is a Bernoulli distribution with parameter p if $X=1$ with probability p, and $X=0$ with probability $1-p$.

Let $X_{1}, X_{2}, \ldots, X_{n}$ be n independent Bernoulli random variables with parameter p. $Y=\sum_{i=1}^{n} X_{i}$ is a Binomial distribution with parameters (n, p).

$$
P(Y=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Y is the number of successes in n independent trials, where p is the probability of a success in a trial. The mean of Y is $n p$, and the variance of Y is $n p(1-p)$, can you prove this?

6. A note on truncated random variables

Consider a random variable X with density $f_{X}(x)$. What is $\mathbb{E}[X \mid X>a]$? $X>a$ is an event, not a random variable, so do not confuse with the formula for deriving conditional density. The density of $X \mid X>a$ is $\frac{1}{1-F_{X}(a)} f_{X}(x) \mathbb{1}(x>a)$ with the support truncated to $x>a$. Note this density integrates to one.
In general, the density of $X \mid X \in(a, b)$ is $\frac{1}{F_{X}(b)-F_{X}(a)} f_{X}(x) \mathbb{1}(x \in(a, b))$ with the support truncated to $x \in(a, b)$. Note this density integrates to one as well.

Now let $X \sim U[0,1]$, and $a \in(0,1)$, what is $\mathbb{E}[X \mid X>a]$?

$$
\begin{aligned}
\mathbb{E}[X \mid X>a] & =\frac{\mathbb{E}\left[X \mathbb{1}_{\{X>a\}}\right]}{1-F_{X}(a)} \\
& =\frac{\int_{a}^{\infty} x f_{X}(x) d x}{1-F_{X}(a)} \\
& =\frac{\int_{a}^{1} x d x}{1-a} \\
& =\frac{\int_{a}^{1} x d x}{1-a} \\
& =\frac{a+1}{2} \quad \text { for } a \in(0,1)
\end{aligned}
$$

For instance, if $X \sim \mathcal{N}\left(0, \sigma^{2}\right)$, then we can use the above formula to show that $\mathbb{E}[X \mid X>0] \approx 0.7978 \sigma$.

Now consider the random variables (X, Y) which are joint uniformly distributed on the unit square. That is, $f(x, y)=1$ for $0<x<1$ and $0<y<1$. Show that $\mathbb{E}[X \mid Y>X]=\frac{1}{3}$. Note that $Y>X$ is an event, not a random variable. As such, the formula to compute this conditional expectation is $\mathbb{E}[X \mid Y>$
$X]=\frac{\mathbb{E}\left[X \mathbb{1}_{\{Y>X\}}\right]}{P(Y>X)}$, and not $\mathbb{E}[Y \mid X=x]=\int y \frac{f(x, y)}{f(x)} d y$, which is the formula when conditioning on a random variable. In general, the density of $X \mid(X, Y) \in A$ is $\int_{-\infty}^{\infty} \frac{1}{\operatorname{Pr}((X, Y) \in A)} f_{X, Y}(x, y) \mathbb{1}((x, y) \in A)$.

$$
\begin{aligned}
\mathbb{E}[X \mid Y>X] & =\frac{\mathbb{E}\left[X \mathbb{1}_{\{Y>X\}}\right]}{\operatorname{Pr}(Y>X)} \\
& =\frac{\int_{0}^{1} x \int_{x}^{1} f_{X, Y}(x, y) d y d x}{1 / 2} \\
& =\frac{\int_{0}^{1} x(1-x) d x}{1 / 2} \\
& =\frac{1}{3}
\end{aligned}
$$

[^0]: ${ }^{1}$ In additional Σ also has to be positive semi-definite, that is, $\boldsymbol{x}^{T} \Sigma \boldsymbol{x} \geq 0$ for all $\boldsymbol{x} \in \mathbb{R}^{k}$.

[^1]: ${ }^{2}$ More specifically, this is the Collapsed Gibbs Sampling
 ${ }^{3}$ The Gamma function is an interesting function. It is defined as $\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t$. The Gamma function satisfies the following recurrence relation: $\Gamma(z)=(z-1) \Gamma(z-1)$. As such, when z is an integer, $\Gamma(z)=(z-1)$!. We can think of the Gamma function as an extension of the factorial function to non-negative real numbers. For non-integers $z>1$, it must be that $\Gamma(z)=(z-1)(z-2) \ldots \delta \Gamma(\delta)$ where $0<\delta<1$.

