LECTURE 4: MULTIVARIATE RANDOM VARIABLES II

MECO 7312.
INSTRUCTOR: DR. KHAI CHIONG
SEPTEMBER 24, 2025

1. Important identities

1.1. Law of iterated expectations

E[Y] = E[E[Y|X]]

Now E[Y|X] is a scalar random variable, and inhabits the same probability space
as X. Therefore, the outer expectation on the right-hand side is taken with respect

to fx(z).

o0

EY|X =] = / Uy ixal(y) dy

—0o0

= g(x)

EE[Y]X]] = E[g(X)]

= /_ Z ( /_ : Yfvix=:(y) dy) f(z)dx

Intuitively, suppose we use realizations of the variable X to predict Y. Then the
average of the predicted values over X equals to the average of Y.

Example:

Recall the pdf f(x,y) = = + y with the support on {(z,y) € R*: 0 <z < 1,0 <
y < 1}. Previously, we found that:

243X
3+6X

E[Y|X] =

Therefore,
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1.2. Important properties of conditional expectations

This section is adapted from Chapter 2 of “Econometric Analysis of Cross Section
and Panel Data” by Jeffrey M. Wooldridge.

Let Y, X be random variables. Let Z be the random variable such that Z = g(X),
for some function g.

Comparing E[Y|X] and E[Y'|Z], we can think of E[Y'|Z] as conditioning on a smaller
information set. Because if we know the outcome of X, then we would know Z, but
the converse is not true.

(1) E[E[Y|Z]|X] = E[Y|Z]
(2) EE[Y[X]|Z] = E[Y|Z]

A phrase useful for remembering both equations above: “The smaller information
set always dominates”. This is also known as the Tower Property of conditional
expectations, which can be demonstrated more formally with measure-theoretic no-
tations.

Some consequences of this useful property:
(3) E[E[Y|X]|X?] = E[E[Y]X?]|X] = E[Y|X]
(4) EE[Y X, W]|X] = E[E[Y[X]|X, W] = E[Y[X]

1.3. Conditional variance identity

Var(Y) = E[Var(Y|X)] + Var(E[Y | X])
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E[Y|X] and Var(Y'|X) are each scalar random variable that is a transformation of X
and has the same probability space as X. Therefore, the expectation and variance
on the right-hand side is taken with respect to the pdf fx(z).

Example:

Using the same example as before, we have the pdf f(x,y) = x4y with the support
on {(r,y) eR?:0<2<1,0<y <1},

243X
N X

E[Y]X]

+ 6
/1 +32\° /1 2
= —+x)de— | —=
s \3+62/) \2 12
1 49

We can derive Var(Y|X) by:
Var[Y|X = 2] = E[Y?|X = 2] — (E[Y|X = 2])*

_ / P fyx—a(y) dy — (EIY|X = a])?

:/1y22(a:+y)dy_ 24 3z\°

0 1+ 2% 3+ 6x
4z + 3 2+ 32\

122+ 6 3+ 6x

vty X)) = [ o (3= ) Feo s

= (12~ log(3))

Therefore, E[Var[Y|X]] + Var(E[Y|X]) = 1L = Var(Y).
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2. Example: putting everything together

Suppose X and Y are distributed uniformly on the triangle (0,0), (0,1), (1,0). That
is:

2 if0<z<1,0<y<lazt+y<l
0 otherwise

1 1—y
/ / 2dx dy
0o Jo

Performing the inner integral first with respect to x:

[t = [C20-ay

21
Y 1
—oly— L —on—2)=1
[y 2]0 (-9

fX,Y(-Tvy) = {

1.) Is this a valid pdf?

2.) Derive the marginal pdfs.

fX(x):/0_$2dy:2(1—x) for x € [0, 1]

1—y

fy(y)z/o 2dy =2(1 —y) fory €0,1]

3.) Calculate Cov(X,Y)
Cov(X,Y) = E[XY] — E[X]E[Y]
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E[XY] = //xyf(x,y) da dy

1 1-y
:// 2zy dx dy

o Jo

1 1 2 9,3 471 1
— 2015Y gy = 1_2d:y__i LA
/O[xy]o y /0( y)7ydy [2 3 4], T 1.

Hence Cov(X,Y) = E[XY] — E[X]E[]Y] = % — (%)(%) __1
4.) Calculate P(Y <1 —2X):

P(Y§1—2X):/ /1_2zf(m,y)dydm
o Jo

1/2
1/2
= / 2 —4xdx
0
1

1/2
= [2x—2x2]0 = 5

5.) Derive E[Y|X = z] and Var(Y|X = x):
First, the density of Y| X = :

for y € [0,1 — «]

fyix=2(y) = f(x’z)/) 2

fl@) 201 —=)

Conditional expectation:

I
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E(Y|X = ) :/0 h Yfyix=(y) dy

Conditional variance:



MECO 7312 Lecture 4: Multivariate Random Variables 11
Var(Y|X = 2) = E[Y?|X = 2] - E[Y|X = 2]?

11—z _ 2
=/ Y fyix=(y) dy — (1 5 x)
0

Alternatively,
1-X
Var(E[Y|X]) = Var ( )

1
= ZV&T(X)

(- marer) <3 (32 -5

E(Var[Y]X]) :/0 %(1 —2)?-2(1 —x)dx

1
24

Indeed, we see that the Conditional Variance Identity holds true here. Var(Y') =
E[Var(Y|X)] + Var(E[Y|X]), where Var(Y) = [} y?2(1 —y)dy — t = L.
3. Transformation of bivariate random variables
Let (X,Y') be a bivariate random vector. Consider a new bivariate random vector
(U, V) defined by U = ¢1(X,Y), V = go(X,Y). What is the probability distribution

of (U,V)?
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Let A denote the support of the (X,Y), ie. A = {(z,y) € R* : fxy(z,y) >

0}.
The transformation is U = ¢;(X,Y) and V = ¢o(X,Y). The support of (U,V) is
then B = {(u,v) € R? : u = g,(z,y),v = go(x,y) for some (z,y) € A}.

Assume that g; and g, are functions such that the relationship between A and B is
one-to-one and onto (a bijection). For each (u,v) € B, there is only one (z,y) € A
such that u = g1 (z,y) and v = go(z, y).

As such, we can solve the equations u = g;(z,y) and v = gs(x, y) in terms of x and y.
That is, there is an inverse transformation such that x = hy(u,v) and y = hs(u,v),
where h; and hy are differentiable functions.

Define the Jacobian matrix:

o om
J= ou ov
ohy  ohy
ou ov

The determinant of the Jacobian matrix is:

ohy 9y
det(J) = ;: ;’h
u o

That is, det(J) = G222 — S lha,

The joint pdf of (U, V) is:

fxy (hi(u,v), ho(u,v)) |det(J)| for (u,v) € B
fov(u,v) = :

0 otherwise
|det(J)| is often called the Jacobian, or the Jacobian of the transformation, or the
Jacobian determinant. Note that det(J) is a function of u,v. Moreover, det(J) # 0
since there is an inverse transformation such that x = hi(u,v) and y = ha(u,v),
where h; and hs are differentiable functions. The Jacobian is also used during
change-of-variables in multiple integrals.
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3.1. Example
Let X and Y be independent, standard Normal random variables.

Consider the transformation U = X +Y and V = X — Y. What is the joint pdf of
v, v)?

¥

332 Y

The joint pdf of (X,Y) is just fxy(z,y) = fx(z)fy(y) = %6’76’7 since X and
Y are independent.

The support of (X,Y) is R?. It follows that U and V can also take any value from
—00 to oo.

and y = hy(u,v) = “5*.

The inverse transformation is « = hy(u,v) = 4

The Jacobian of the transformation is:

oh, om| |11 1

det(J): ou ov _ 2 2 _ =
dhy  Ohy 1 _1 2
ou ov 2 2

Hence the joint pdf of (U, V) is:

fuv(u,v) = fxy(hi(u,v), ho(u,v)) [det(J)]
1 &2 59?1
= —€ 2 [ 2 —

2 2

()

_(e=w)?

2y i. 1 —
Note that the pdf of N(u,o?) is 75=5¢ :

Hence the joint pdf of (U, V') can be factored into two functions fy(u) and fy (v).
Moreover, fy(u) is the pdf of N(0,2). That is, U ~ N(0,2) and V ~ N(0,2). The
sum, U, and difference, V', of independent normal random variables are independent
normal random variables, as long as Var(X) = Var(Y).

We can also consider the ratio and the product of Normal variables. Consider the
transformation U = X/Y and V = X. What is the joint pdf of (U, V')? What about
the product V = XY7?
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3.2. Discrete bivariate random vectors

Let (X,Y) be a a discrete bivariate random vector. Let A be the support of (X,Y),
i.e. the set of points where the joint pmf of (X,Y") takes strictly positive values.
Note that A must be a countable set (either finite or countably infinite).

The joint pmf of (U, V) is:

fov(u,v) =PU =0,V =v) = Z fxy(z,y)

(x’y)EA:gl(‘Tvy):ung(fB’y):U
4. Some important inequalities

4.1. Jensen’s Inequality

A function g(z) is convex if and only if Ag(z) + (1 — N)g(y) > g(Az + (1 — A)y) for
0 < A < 1. Graphically, a straight line connecting any two points of the convex
function lies above the function.

Jensen’s Inequality: For any random variable X, if g(X) is convex, then E[g(X)] >
g(E[X]).

For example: take g(X) = X?, then E[X?] > (E[X])?, which implies that E[X?] —
(E[X])* = 0.

4.2. Concentration inequalities: Markov and Chebyshev

Concentration inequalities give worst—case upper bounds on the probability that a
random variable deviates from a typical value (often its mean). They are distribution-
free: the bounds hold without assuming normality or smooth densities, and they
work for discrete, continuous, or mixed random variables as long as the relevant
moments exist.

We start with Markov’s inequality, which applies to any nonnegative random vari-
able. Chebyshev’s inequality then follows by applying Markov to a squared deviation
from the mean.

Theorem 1 (Markov’s inequality). LetY > 0 be a random variable with E[Y] < oco.
For any € > 0,

E[Y]

Pr(Y >¢) <
5
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Proof. Since Y > € 1yy>.}, taking expectations gives
EY] > ¢ E[liysa] = ¢ Pr(Y >¢).
O

Note that the proof does not assume a density and holds for discrete, continuous,
or mixed Y.

A common corollary (take Y = | X]) is

E[| X
Pr(|X| >¢) < Hg H, provided E[|X]] < oco.

More generally, for any » > 0 and ¢ > 0,

pr(lx] > ) < AL

by applying Markov to |X|".

Corollary 1 (Chebyshev’s inequality): Let X have mean u and variance o2 < oo.

For any t > 0,
2

o
Equivalently, for k£ > 0,

1
Pr(|X —pl ko) < .
Proof. Apply Markov to the nonnegative random variable (X — u)? with threshold
2
E[(X —p)?] _o®

Setting k = 2 gives
1 3
Pr(|X — p| >20) < i Pr(|X —pl <20) > 1
So at least 75% of the mass lies within two standard deviations of the mean—mno dis-
tributional shape assumed. (For bell-shaped distributions like the normal, the true
coverage is much higher—about 95% —illustrating that Chebyshev is conservative
but universal.)

10
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Tightness (sharpness). These inequalities are best possible in general: one cannot re-
place the right-hand side by a uniformly smaller function of the moments alone.

e Markov: Fix ¢ > 0 and m = E[Y]. The two-point distribution with
Pr(Y =¢) = m/e and Pr(Y =0) = 1 — m/e satisfies Pr(Y > ¢) = m/e,
i.e., equality.

e Chebyshev: For any k > 0, the three-point distribution

Pr(X =p)=1-4, Pr(X=ptko)= 5 each,

has mean p, variance o2, and achieves Pr(|X — u| > ko) = 1/k%.
Examples.

(i) Discrete (Poisson). If X ~ Poisson(\) then u = 0? = \. For k = 2,
Pr(IX = A= 2V1) <

1
T
X—1/>2) =Pr(X >3) ~

For instance, with A = 1, the actual tail is Pr(
0.0803 < 0.25, which is rather conservative.

(ii) Normal. If X ~ N(u,0?), then Pr(|X — u| < 20) ~ 0.954, far tighter than
the Chebyshev guarantee > 0.75.

If Xi,...,X, areii.d. with mean p and variance 0% < oo, then for any ¢ > 0,

Var(X,) o?
€2 ne? noec
a one-line proof of the WLLN (Weak Law of Large Numbers) via Chebyshev.

Pr(})?n—u‘zeE) < > 0,

Theorem 2 (Cantelli’s one-sided Chebyshev inequality). Let X have mean p and
variance o> < oo. For anyt > 0,

2 2

o o
Pr(X—uZt) < o and Pr(,u—XZt) < ol

Equivalently, with k =t/o, Pr(X — p > ko) < 115
Proof. Write Y = X — p so that E[Y] = 0 and Var(Y) = 02. Fix any a > 0. Then
{Y >t} C{Y +a>t+a} and hence

E[(Y 4 a)?] o? + a?

Pr(Y > t) = Pr((Y +a)’ > (t+a)*) < (t+ a)? N (t+a)?’

11
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by Markov’s inequality applied to the nonnegative (Y + a)?. We now minimize the
right-hand side over a > 0:

o? +a? o? (0% — ta)? _—

(t+a)?  o2+12  (t+a)X(o2+1t2) —

with equality at a* = ¢?/t. Therefore Pr(Y >t) < % Applying the same bound
to —Y gives the left-tail version. One can also show that this bound is sharp in that

there exists a random variable for which this bound is achieved with equality. [

5. Common families of statistical distributions

5.1. Multivariate Normal

We are already familiar with the one-dimensional Gaussian random variable X ~
N (1, 0?), which has the pdf fx(x) = \ﬁl e~ (@=1?/20% with the support over the

' . 2mo
entire real line.

The k-dimensional Gaussian random variable is described as:

X ~N(p,X)

X is a k-dimensional random vector. p is a k-dimensional vector, Y. is a k-by-k
symmetric matrix called the variance-covariance matrix. A matrix ¥ is symmetric
if Y7 =%, as such ¥ has k + (k* — k)/2 = (k* + k)/2 number of parameters. The
k diagonal terms of ¥ describe the variances of each individual random variable,
while the (k* — k)/2 off-diagonal terms of ¥ describe the pairwise correlations be-
tween each of the variable." Therefore a k-dimensional Gaussian variable has w
number of parameters. For example, a 2-dimensional multivariate Gaussian has 5

parameters.

For the bivariate Normal distribution:

) 2
Y Ly pPOXxOy oy

The pdf of (X,Y) is:

” 1 1 (z—px)? | (=) 2p(z — px)(y — py)
{ fix Yy — fy p uxyuyD

z,y) = exp | — + —
flz.y) 2noxoyy/1 — p? < 2(1 - p?) 0% oy ox0y

153 also has to be a positive semi-definite matrix, that is, 27 Sa > 0 for all € R*.

12
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for x,y € R?. Check that the marginal pdf of X is just the univariate Normal
pdf:

1 _(90*#2)()2
fx(z) = —e *x , z€R
2moy
1 7(y*#y)2

fY(y) = \/me 7y VNS R

Hence, the moments of (X,Y’) are described by the parameters of the pdf, i.e.
E[X] = ux, E[Y] = py, Var(X) = 0%, Var(Y) = 0.

In addition, we can compute Cov(X,Y) = E[XY] — E[X]E[Y] from the joint pdf,
which turns out to be poxoy. As such the correlation of X and Y is just p.

If we set p =0, i.e. zero correlation between X and Y, then:

flx,y) = fx(x)fv(y)

Hence, for Multivariate Normals, zero correlation implies independence. Also, if X
and Y are independent with univariate Normal distributions, then (X,Y") trivially
has a bivariate Normal distribution.

However in general, if two random variables X and Y are univariate Normals, it
is not true that (X,Y’) has a bivariate Normal distribution. Can you work out an
example?

The conditional distribution of Y given X = x is:
o
(6 (YIX =) ~ N (EIY] + 7 (2~ E[X]). (1~ )0} )

This implies that the conditional expectation of Y given X is:

E[Y|X] = E[Y] + (X ~ E[X))

It is a linear function of X and has a normal pdf. The fact that E[Y|X] is linear in
X means that the best prediction of Y using X is some linear function of X. That
is, we can’t do better than a linear regression of Y on X if (Y, X) is a bivariate
Normal.

13
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The conditional variance of Y given X is Var[Y|X] = (1 — p?)o?, which does not
depend on X.

In general, the joint density of a k-th dimensional multivariate Normal distribution
is:

exp (—3(x — )" 27 (x — p))
(2m)H 2]

fx(.rl, Ce ,ZEk) =

Where X is a k-by-k variance-covariance matrix of X, and p is a k-dimensional
vector. We say that X ~ N(p,X).

5.2. Example

For example, let ux = py = 0 and ox = oy = 1 in the joint pdf of Bivariate Normal
(Equation 7). The location parameters px and py merely shift the center of the
distribution around. Then we have:

_ 1 o 2?4 y* —2pay

Visualize this joint pdf at various values of p as in Figure 1 below.

Now we derive the conditional distribution of Y given X.

24,2
1 exp <_w +y 2pxy>

fzy) _ emy/1-p? 20-7%)
fYIX:JJ(y) = = a 22
/(=) L%
ez
1 2% +y* — 2pxy a:2>
= p — _
V211 — p? 2(1 - p?) 2

The last line is the pdf of a univariate Normal distribution with mean px and
variance 1 — p?. Therefore,

(Y|X =) ~ N(pz,1 - p?)
14
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[_x‘+y‘—2pxy

() ]s p+0.75], 1x, -2, 23,

; P'I.otaD[Rep'I.aceA'l.'L[ v (l 2)
27 1-p

v, -2, 2}]

ey,
[T F T T
T FFLFTT

]’ P"e]: {x5 -2, 2}, {y, -2, 2}]

[ x2+y?2-2pxy

: P'I.ot3D[Rep'I.aceA'I.'L[ ( 2)
2 2(1-p

! Exp
V(a-e?)

FIGURE 1

5.3. Sampling from a multivariate Normal

To sample from a scalar random variable, we learned how to use the probabil-
ity integral transform. We can use the conditional distribution to sample from a
multivariate distribution. For instance, to sample from a bivariate Normal distribu-

tion:
)10 Gl 730)]
) 2
Y Ly pPoOXxOy oy
First, we sample from the marginal of X, which is just X ~ N (ux,0%).

15
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Recall the conditional distribution of Y given X = x is:
9y 2\ 2
(VIX =) ~ N (v + 07— ), (1= 7)o} )

For every draw of z; from the marginal distribution X ~ MN(ux,0%), we then
sample y; from Y| X = x;. The sample (z;,y;)"; will be a valid sample from the the
bivariate Normal distribution.

This approach is called Gibbs Sampling.” More generally, to sample from a trivariate
distribution f(x,y, z), we first draw x; from the marginal of X, then draw y; from
Y|X = z;, then finally, draw z; from Z|Y = y;, X = x;. Now, the density of Z|Y, X
can be derived as f(z,y,2)/f(z,v).

Let’s try to implement Gibbs sampling using R or Python.
5.4. Beta distribution

Beta distribution is used to model random variables that lie within the unit interval
[0,1]. For example, if we want to model fractions or probabilities, then we use the
Beta distribution.

The Beta distribution is controlled by two parameters o > 0 and g > 0, that is,
X ~ Beta(a, ).

The pdf is fx(z) oc 2%71(1 —2)?! for z € [0,1]. The constant of proportionality is

%, where I is the Gamma function.”

The Beta distribution is a very flexible class of distributions that can generate
distributions that are positively or negatively skewed, varying modes and medians.
The mean is given by aaTﬁ

The Dirichlet distribution generalizes the Beta distribution to multiple dimensions:

f<$1,...,$K;O{1,...,O{K) o(HxiOéi—l

2More specifically, this is the Collapsed Gibbs Sampling
3The Gamma function is an interesting function. It is defined as T'(z) = fooo t*~le~tdt. The
Gamma function satisfies the following recurrence relation: T'(z) = (z — 1)I'(z — 1). As such,
when z is an integer, I'(z) = (2 — 1)!. We can think of the Gamma function as an extension
of the factorial function to non-negative real numbers. For non-integers z > 1, it must be that
I(z) =(z—1)(z —2)...6T(d) where 0 < ¢ < 1.
16
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Where {z; }¥=K belong to the standard K —1 simplex, or in other words: Zf; x; =1
and z; > 0 for all i € {1,..., K'}. The normalizing constant is the multivariate beta
function, which can be expressed in terms of the gamma function

Hfil (o)

Bla) = =——=—/———, a=(o,..., oK)

I <Zfi1 O‘l’)
5.5. Gamma distribution

The Gamma distribution is used to model random variables that takes positive
values. It is a general form of the Exponential distribution. It is also used in
Bayesian statistics as conjugate priors, and in the frequentist setting for hypothesis
testing.

Let X1, X,,..., X, be n independent Exponential distribution with parameter A.
Then, Y ", X; ~ Gamma(n, A). Therefore the Gamma distribution gives the du-
ration it takes until n number of event occurrences, where the rate of an event
occurrence is \.

More generally, the Gamma distribution is a two-parameter distribution. X ~
Gamma(cq, f) where X takes only positive real values and «, 5 > 0. The pdf is

given by f(z) = % for x > 0.
1

If X ~ Gamma(l,]), then X has an exponential distribution with mean . If

X ~ Gamma(v/2,1/2), then X is identical to x(v), the chi-squared distribution
with v degrees of freedom.

5.6. Bernoulli and Binomial Distribution

X is a Bernoulli distribution with parameter p if X = 1 with probability p, and
X = 0 with probability 1 — p.

Let X4, X5,..., X, be n independent Bernoulli random variables with parameter p.
Y =>"" | X, is a Binomial distribution with parameters (n, p).

Pl =i = (} )t
Y is the number of successes in n independent trials, where p is the probability of a

success in a trial. The mean of Y is np, and the variance of Y is np(1 — p), can you
prove this?

17
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6. A note on truncated random variables

Consider a random variable X with density fx(z). What is E[X|X > a]? X > a
is an event, not a random variable, so do not confuse with the formula for deriving

conditional density. The density of X|X > a is Tlxm) fx(x)l(z > a) with the

support truncated to x > a. Note this density integrates to one.
In general, the density of X|X € (a,b) is ()1(z € (a,b)) with the

support truncated to = € (a,b).
For example, let X ~ UJ0, 1], and a € (0,1), what is E[X|X > a]?

1
Fx (b)—Fx(a) fx

E[X1{x>q)]
1-— Fx(a)

_ faooxfx(x)dx
N 1-— Fx(a)
falxdx a-+1

=S, T 3 for a € (0,1)

E[X|X > a] =

For instance, if X ~ A(0,0?), then we can use the above formula to show that

E[X|X > 0] =2 [[* w(x) dz = 2% ~ 0.79780.

Now consider the random variables (X, Y’) which are joint uniformly distributed on
the unit square. That is, f(z,y) = 1for 0 <z < 1 and 0 < y < 1. Show that
E[X|Y > X] = 3. Note that Y > X is an event, not a random variable. We can show

that the joint density of (X,Y)|(X,Y) € A is mijy(x,y)]l((m,y) € A),
hence, the density of X|(X,Y) € Ais [*_ mfx,y(% Y 1((z,y) € A)dy

Ixjysx () = /O mf)(y(%y)ﬂ(y > x)dy

1
:/"%@:2@_@,ﬂnxemﬁ

1
1
mxw>x¢:/2m1—@dx:§
0

*Let fxy(z,y) be the joint density of (X,Y). We want to find the conditional
density fix,v)|x,v)ea(®,y), which must satisfy the following for all measurable set
B C R2.

18
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(8) P((X,Y)€B|(X,Y) € A)= / /B Foer eryea(es y) de dy

By the definition of conditional probability:

P((X,Y)e BN A)

(9) PUXY) e BIXY) € A) = =5 Ve

Now,

PUXYVIeBnA)= [ [ fovinpdrdy

-/ /B Py (2, 9)1((z,y) € A) dz dy

Equating 8 and 9, which holds for all B, the integrands must be equal almost
everywhere, we then have fixv)|(xy)ea(.y) = smyen [y (@ 9)L((z,y) € A),
for (x,y) € R2.

19
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