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1. Linear regression models

Let (Y,X, ε) be random variables such that:

Y = a+ bX + ε(1)

a and b are unknown parameters, where E[ε|X] = 0. Show that E[ε|X] = 0 implies
the following: (i) E[Xε] = 0, (ii) Cov(X, ε) = 0, and (iii) E[ε] = 0.

Suppose n i.i.d random samples: (yi, xi, εi) for i = 1, . . . , n are drawn from the
data-generating model, but we only observe (yi, xi)

n
i=1 as our dataset.

Three ways of estimating a and b, all leading to the same estimators!

Method of moments.

E[εX] = 0(2)

E[XY − aX − bX2] = 0(3)

E[ε] = 0(4)

E[Y − a− bX] = 0(5)

Or we can use Maximum Likelihood Estimator, but we have to additionally assume
that ε ∼ N (0, σ2), or equivalently, Y − a− bX ∼ N (0, σ2). Therefore,

L(a, b, σ|x1, y1, . . . , xn, yn) =
n∏
i=1

φ

(
yi − a− bxi

σ

)
(6)

argmax
a,b,σ

n∑
i=1

log φ

(
yi − a− bxi

σ

)
(7)
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Where φ is the pdf of the standard Normal.

The third method is to minimize the sum of squared errors using calculus: mina,b
∑n

i=1(yi−
a− bxi)2.

1.1. Multivariate linear regression

Now consider:

Y = β1X1 + β2X2 + · · ·+ βKXK + ε(8)

Suppose we draw n i.i.d random samples: (yi, xi1, xi2, . . . , xiK , εi) for i = 1, . . . , n
from the data-generating process above. However, εi is unobserved, we only observe
(yi, xi1, xi2, . . . , xiK), which we refer to as the “dataset.” The dataset is related as
follows.

yi = β1xi1 + β2xi2 + · · ·+ βkxiK + εi(9)

We can manipulate this equation using Matrix Algebra.

y =

y1...
yn



ε =

ε1...
εn


X =

[
X1, X2, · · · , XK

]
Where Xk is a n×1 column vector containing the k-th explanatory variable. Other
names for explanatory variable: features (used by computer scientists), covariates,
regressors (used by economists).

Xk =

x1k...
xnk


(x1k, x2k, . . . , xik, . . . , xnk) are called observations for the k-th covariate.
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X =

x11 · · · x1K
...

. . .
...

xn1 · · · xnK



β =

β1...
βK


y = Xβ + ε

Xβ is the matrix product of a n×k matrix with a k×1 matrix, resulting in a n×1
matrix.

Our entire dataset are contained in the data matrix [y,X].

2. Ordinary Least Squares (OLS) estimator

How do we estimate the β? If we were to use Method of Moments, we need at least
K number of moments conditions.

The assumption we need is that X is exogenous, also known as the conditional
mean independence assumption: E[ε|X1] = 0, E[ε|X2] = 0, . . . , E[ε|XK ] = 0. The
error term is (conditionally mean) independent of each of the K explanatory vari-
able.

The sample moment conditions can be written as:
∑n

i=1 xi1εi = 0,
∑n

i=1 xi2εi = 0,
. . . ,

∑n
i=1 xikεi = 0. In matrix notation:

XT
1 ε = 0(10)

...

XT
k ε = 0(11)

Now XT
k is the matrix transpose of Xk, therefore, XT

k is a 1×n row vector. XT
k =[

x1k, x2k, · · · , xnk
]
.

Finally, all the sample moment conditions can be summarized as just:

XTε = 0K(12)

Where 0K is a K × 1 vector of zeros. XT is a K × n matrix, while ε is a n × 1
matrix, therefore their matrix product has dimension K × 1.
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Now, we can derive the OLS (Ordinary Least Square) estimators:

XTε = 0(13)

XT (y −Xβ) = 0(14)

XTy −XTXβ = 0(15)

(XTX)−1XTy − (XTX)−1XTXβ = 0(16)

(XTX)−1XTy − β = 0(17)

β = (XTX)−1XTy(18)

Note that the right-hand side of β = (XTX)−1XTy consists entirely of the com-
ponents of the data matrix. Therefore this is a valid estimator.

2.1. OLS simulation

It is instructive to implement OLS estimators in a programming language of your
choice. For this section, we refer to the Python Notebook or R Markdown.

Let the true model and data-generating process be Y = 2− 3X1 + 0.5X2 + ε, where
ε ∼ N (0, 2), X1 ∼ Exponential(0.5), and X2 ∼ N (−1, 1). We now generate dataset
from this DGP assuming random i.i.d sampling with a sample size of n = 1000.

The dataset is (y1, xi1, xi2, εi)
n
i=1. Since yi is related to the other variables, we gener-

ate yi through yi = 2−3xi1+0.5xi2+εi. The true coefficient/parameters are therefore
β = [2,−3, 0.5]T . After we generated the data matrix, we stack them according to

the data matrix [y,X]. We compute the OLS estimator β̂ = (XTX)−1XTy, and
compare it to the true value.

3. Multicollinearity

The OLS estimator is β̂ = (XTX)−1XTy.

The matrix (XTX) needs to be invertible. (XTX) is invertible if and only if
rank(X) = K ≤ n, i.e. the columns of X are linearly independent and the number
of rows is greater than the number of columns.

Suppose a particular column of X can be written as a linear function of some other
columns ofX (for example,Xk = λ1X1+λ2X2), then we say that there is a perfect
multicollinearity. The regressors are linearly dependent. (XTX) does not have
an inverse – OLS estimator is ill-defined.

In general, even when there is no exact linear relationship between the regressors,
OLS estimator will run into problem when one of the regressors are highly correlated
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with another regressor. This is the multicollinearity problem. The inverse (XTX)
is almost singular. Computation of the inverse of an almost singular matrix is highly
unstable and numerically imprecise. When one of the regressors are too similar to
another regressor, we cannot separately identify their respective coefficients.

Consider the simulation exercise before. Let the (true) data-generating process be
Yi = 2− 4Xi1 + 0.5Xi2 + εi for i = 1, . . . , 1000, where εi ∼ i.i.d N (0, 2), Xi1 ∼ i.i.d
Exponential(0.5), and Xi2 = 5− 2Xi1.

Now let Xi2 = 5− 2Xi1 + vi, where vi ∼ N (0, 0.1).

Multicollinearity can be detected by calculating the condition number of the matrix
(XTX). When the condition number is high, the matrix is ill-conditioned and
almost singular.1

4. Unbiasedness of OLS estimators

What does unbiasedness mean here? Recall the simulation exercise before – we get
different OLS estimates in different simulation when we draw a different random
sample from the DGP. What is the average of those OLS estimates over infinitely
many simulations?

To examine the unbiasedness of the OLS estimator, we need a ground truth, and
say that it is unbiased with respect to a data-generating process.

DGP: (yi, xi1, xi2, . . . , xiK , εi)
n
i=1 are generated from some joint distribution that

obeys the equation y = Xβ0 + ε. We can be agnostic about this joint distribution,
in particular, εi may not even be i.i.d across i. For instance, (xi1, xi2, . . . , xiK , εi)

n
i=1

could be generated i.i.d from the distribution f(x1, x2, . . . , xK , ε), or from some non-
i.i.d distribution f((xi1, xi2, . . . , xiK , εi)

n
i=1).

Let β̂ be the OLS estimator.

1The condition number is computed by finding the square root of the maximum eigenvalue
divided by the minimum eigenvalue of the matrix. If the condition number is above 30, the
regression may have significant multicollinearity. The condition number of a matrix indicates the
potential sensitivity of the computed inverse to small changes in the original matrix.
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E[β̂] = E[(XTX)−1XTy](19)

= E[(XTX)−1XT (Xβ0 + ε)](20)

= E[β0 + (XTX)−1XTε](21)

= β0 + E[E[(XTX)−1XTε|X]](22)

= β0 + E[(XTX)−1XT E[ε|X]](23)

The Law of Iterated Expectation is applied in the last two equations. It is clear
that a sufficient condition for the unbiasedness of OLS estimator is that E[ε|X] = 0.
This expression means that E[εi|X] = 0 for all i = 1, . . . , n. Further unpacking, it
means that εi for each i = 1, . . . , n is (conditionally mean) independent from the
entire matrix X, i.e. E[εi|x11, . . . , xik, . . . , xnk] = 0.

Two possible ways to satisfy E[εi|X] = 0.

(1) (εi, xi1, xi2, . . . , xiK) are independently and identically distributed across i from
some probability distributions, and E[εi|xi1, xi2, . . . , xiK ] = 0. In the i.i.d case, we
can drop the i subscript, and write E[ε|X1, X2, . . . , XK ] = 0. Now E[ε|X1, X2, . . . , XK ] =
0 implies that E[ε|Xk] = 0 for k = 1, . . . , K.2 This is what we assumed when we use
the Method of Moments to derive the OLS estimator. This is a sufficient but not a
necessary condition for unbiasedness.

(2) (εi, xi1, xi2, . . . , xiK) are not necessarily i.i.d across i, but E[εi|X] = 0 for each
i. Therefore, in the context of time-series where i.i.d does not hold true, OLS can
still be unbiased. There can be no correlation between the error term at time t
and your covariates at time 1, . . . , t, t + 1, t + 2, . . . . For example, we require that
E[εt|x1k, . . . , xtk, . . . , xTk] = 0 for covariate k, in order for E[εt|X] = 0.

E[ε|X] = 0 is also called the exogeneity condition. Exogeneity can be violated under
many circumstances – whenever the regressor is correlated with the error term. For
example, a common scenario is when a variable that explains the dependent variable
is omitted from the estimating equation, and this omitted variable is correlated with
another explanatory variable. As such, OLS is biased (omitted variable bias). In
the companion Python notebook, we worked out the direction of the biases when
there is a omitted variable.

2By the Tower Property.
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