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1. Cramer-Rao lower bound

An estimator is a best unbiased estimator if it achieves the lowest variance among
all possible unbiased estimators.

The Cramer-Rao lower bound gives a lower bound on the variance of unbiased
estimators. If an unbiased estimator achieves the Cramer-Rao lower bound, then it
is a best (most efficient) unbiased estimator.

Let X = (X1, . . . , Xn) be a random sample from the density f(x|θ). Define the
Fisher’s Information number as:

I(θ) = nE

[(
∂ log f(X|θ)

∂θ

)2
]

(1)

Where the expectation is taken with respect to X ∼ f(x|θ). That is,

I(θ) = nE

[(
∂ log f(X|θ)

∂θ

)2
]

= n

∫ (
∂ log f(x|θ)

∂θ

)2

f(x|θ) dx

The Fisher’s information number varies with the actual parameter. The higher the
Fisher’s information number, the lower the minimum achievable variance. Intu-

itively, large magnitudes of ∂ log f(x|θ)
∂θ

means that the log-likelihood is very sensitive
to small changes in θ, which accordingly contains more information about θ.

Theorem 1 (Cramer-Rao Inequality (i.i.d case)). Let X1, . . . , Xn be a random sam-
ple i.i.d from the pdf f(x|θ), and let T (X) be an estimator for θ such that certain
regularity conditions on the density are satisfied. These regularity conditions are
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Var(T (X)) <∞ and

d

dθ
E[T (X)] =

∫
X

∂

∂θ
T (x)f(x|θ)dx

then the Cramer-Rao Inequality says that,

Var(T (X)) ≥
( ∂
∂θ

E[T (X)])2

I(θ)
(2)

X is the support of the pdf f(x|θ). This result holds for both discrete and continuous
random variables. These regularity conditions are satisfied usually with the key
exception of Uniform distribution.1 Further, if T (X) is an unbiased estimator for
θ, then E[T (X)] = θ, and so that ∂

∂θ
E[T (X)] = 1. Among unbiased estimators, the

Cramer-Rao lower bound becomes:

Var(T (X)) ≥ 1

I(θ)
(3)

The Fisher’s Information number (and the Cramer-Rao inequality) is defined more
generally as follows. Let X = (X1, . . . , Xn) be a (possibly non-iid) sample from the
joint density f(x1, . . . , xn|θ). Then,

I(θ) = E

[(
∂ log f(X|θ)

∂θ

)2
]

(4)

Where the expectation is taken with respect to the joint density f(x1, . . . , xn|θ).

Theorem 2 (Cramer-Rao Inequality). Let X1, . . . , Xn be a sample with pdf f(x1, . . . , xn|θ),
and let T (X) be an estimator for θ such that Var(T (X)) <∞ and

d

dθ
E[T (X)] =

∫
X

∂

∂θ
T (x)f(x|θ)dx

1The density is sufficiently smooth such that we can interchange integration and differentiation.

See Leibniz integral rule, which requires that both f(x|θ) and ∂f(x|θ)
∂θ to be continuous in x and θ.

This is guaranteed when either the function f(x|θ) has bounded support in x, and the bounds do
not depend on θ, or the function f(x|θ) has infinite support and it is continuously differentiable.
This regularity condition fails when the parameter space depends on the parameter, such as in the
Uniform distribution when the support depends on the parameter.
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then,

Var(T (X)) ≥
( ∂
∂θ

E[T (X)])2

I(θ)
(5)

The derivative of the log density s(θ|x) = ∂ log f(x|θ)
∂θ

is also called the Score function.
Under some regularity conditions for f(x|θ), we have E[s(θ|X)] = 0.

E
[
∂ log f(X|θ)

∂θ

]
=

∫
∂ log f(x|θ)

∂θ
f(x|θ)dx

=

∫
1

f(x|θ)
∂f(x|θ)
∂θ

f(x|θ)dx

=
∂

∂θ

∫
f(x|θ)dx

= 0

Therefore, the Fisher Information E
[(

∂ log f(X|θ)
∂θ

)2]
is large when the derivative

of the log likelihood realizes values that are large in magnitude, either positively
large or negatively large. Fisher Information can be thought of as a measure of the
curvature or “sharpness” of the likelihood function. When the likelihood function is
very peaked (sharp) with respect to θ, then the Fisher Information is large, meaning
that the observation carries a lot of information about θ. Conversely, if the likelihood
function is flat, the Fisher Information is small, indicating that the observation
carries little information about θ.

Finally, we have another equivalent formula to calculate Fisher information:

I(θ) = −nE
[
∂2 log f(X|θ)

∂θ2

]
= −n

∫
∂2 log f(x|θ)

∂θ2
f(x|θ) dx

1.1. Example

Consider the Poisson distribution P (X = x) = e−λλx

x!
. Because E[X] = λ and

Var(X) = λ, both X̄ and S2 are unbiased estimators of the rate parameter λ.
Which estimator should we use?

With the Poisson distribution, the Fisher’s information number is:
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I(λ) = n

∞∑
x=0

(
∂ log f(x|λ)

∂λ

)2
e−λλx

x!

= n
∞∑
x=0

(x
λ
− 1
)2 e−λλx

x!

= n

∞∑
x=0

(
x2

λ2
− 2x

λ
+ 1

)
e−λλx

x!

= n

∞∑
x=0

(
x2

λ2
− 2x

λ

)
e−λλx

x!
+ n

= n
∞∑
x=0

(
x2

λ2

)
e−λλx

x!
− 2n+ n

=
n

λ2
(λ+ λ2)− n

=
n

λ

Recall that for the Poisson distribution with unknown parameter, X̄ is an unbiased
estimator of λ, and moreover Var(X̄) = λ

n
. Therefore, the estimator X̄ for λ in

the Poisson case achieves the Cramer-Rao lower bound, and hence, it is the best
unbiased estimator of λ.

2. Properties of MLE

In finite-samples (for small n), the MLE is often dominated by other estimators
in terms of unbiasedness or mean-squared error. However, MLE is widely used, as
under certain regularity conditions, the MLE possesses many desirable properties.
Notably, MLE is consistent, asymptotically Normal and it is efficient. Among all
consistent and asymptotically normal estimators, the MLE achieves the smallest
possible asymptotic variance, which is the inverse of the Fisher Information.

2.1. Consistency and identification

MLE is a consistent estimator. That is, θ̂ converges in probability to θ, the true
parameter value, as n → ∞. Therefore, whatever bias that MLE suffers, it will
disappear when enough sample size is collected.

There are several regularity conditions that are sufficient for MLE to be consistent,
efficient and asymptotically Normal. These conditions ensure that the likelihood
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function behaves “nicely” in a neighborhood of the true parameter value. For ex-
ample, (1) the likelihood function is sufficiently smooth and differentiable in the
parameter, (2) the parameter space is compact (which essentially means that MLE
exists), (3) the true parameter lies in the interior of the parameter space and not
on its boundary, etc. In practice, the main substantive conditions we have to worry
about is the identification condition, and that the density is correctly specified.

The parameters must be identified in the following sense. If θ 6= θ′, then L(θ|x) 6=
L(θ′|x). If this condition does not hold, then there are two parameter values that
generate the same likelihood. We would not be able to distinguish between these
two parameters even with an infinite amount of data, these parameters would have
been observationally equivalent.

As an example, consider estimating the parameters α, µ, σ given the modelN (αµ, σ2).
Then, (α, µ, σ) and (kα, µ

k
, σ) are observationally equivalent and have the same like-

lihood. If (α̂, µ̂, σ̂) = argmaxL(α, µ, σ), then (kα̂, µ̂/k, σ̂) = argmaxL(α, µ, σ) for
any k. The parameters are not identified, MLE will not converge to the true pa-
rameter values. Is the model N (µ − α, σ2/α) identified? What about mixtures of
Normals?

If the pdf is regular, then we can find MLE by taking the derivative of the log-
likelihood and solving for the first-order conditions, that is, in terms of the Score
function, s(θ̂MLE|x1, . . . , xn) = 0. Under random sampling, MLE satisfies

∑n
i=1 s(θ̂MLE|xi) =

0

2.2. Asymptotic normality

MLE is asymptotically Normal. That is,
√
n(θ̂MLE − θ) converges in distribution to

a Normal distribution with mean zero (since it is consistent).

Moreover, MLE is also the most efficient estimator when n → ∞. It achieves the
Cramer-Rao lower bound when n is large.

Specifically, suppose that θ̂MLE is an MLE of θ given the data x1, . . . , xn realizes
i.i.d from f(x|θ).2 We have that θ̂MLE is asymptotically Normal:

√
n(θ̂MLE − θ)

d−→ N (0, nI(θ)−1) as n→∞

Where I(θ) = nE
[(

∂ log f(X|θ)
∂θ

)2]
is the Fisher’s information number. The variance

of MLE is therefore approximated by I(θ)−1. Now θ is unknown, but by Continuous

2Assume that θ is a scalar, but the result generalizes to a vector of parameters.
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Mapping Theorem, we can plug in a consistent estimator of θ, i.e. we can compute
the asymptotic variance of MLE as I(θ̂)−1, where θ̂ is the MLE of θ.3

In addition, I(θ)−1 often has no closed-form, so we estimate E
[(

∂ log f(X|θ)
∂θ

)2]
using

its sample moment: 1
n

∑n
i=1

(
∂ log f(xi|θ)

∂θ

)2
, or we estimate E

[(
∂ log f(X1,...,Xn|θ)

∂θ

)2]
using a single draw:

(
∂ log f(x1,...,xn|θ)

∂θ

)2
.

2.3. Example

Let X1, . . . , Xn be i.i.d. N (µ, σ2), and consider the maximum likelihood of σ2. We

know that the MLE of σ2 is σ̂2 = 1
n

∑n
i=1(xi− x̄)2, which has variance 2(n−1)σ4

n2 . If we

calculate the Fisher’s information number I(θ) = nE
[(

∂ log f(X|θ)
∂θ

)2]
, we will find

that I(θ)−1 = 2σ4

n
. Therefore for asymptotically large n, the MLE of σ2 achieves

the Cramer-Rao lower bound variance.

2.4. Multiple parameters

When there are multiple parameters in the MLE,

√
n(θ̂MLE − θ)

d−→ N (0, I−1) as n→∞

Where I is the Fisher’s Information Matrix:

[
I(θ)

]
i,j

= E

[(
∂

∂θi
log f(X|θ)

)(
∂

∂θj
log f(X|θ)

)∣∣∣∣] .
The vector ∇ log f(X|θ) is the Score vector. The information matrix is then expec-
tation of the outer product of the score vector, E[(∇ log f(X|θ))(∇ log f(X|θ))T ]

We use 1
n
I−1 as an (asymptotic) approximation of the variance-covariance matrix

of θ̂MLE.

In the multivariate case, the Cramer-Rao inequality becomes the following: let T (X)
be an unbiased estimator of θ, and let V be the variance-covariance matrix of T (X),
then V − I(θ)−1 is positive definite.

3θ̂ →p θ implies that I(θ̂)−1 →p I(θ)−1
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