LECTURE 10: HYPOTHESIS TESTING

MECO 7312. INSTRUCTOR: DR. KHAI CHIONG NOVEMBER 1, 2023

Hypothesis: statement about an unknown population parameter

Examples: 1.) The average household income in the city of Dallas (statement about the population mean).

- 2.) A company's promotional policy has zero effect on sales (statement about the population regression coefficient).
- 3.) Portfolio A is less volatile than Portfolio B (statement about variances of stocks and portfolios).

In hypothesis testing, we are interested in testing between two mutually exclusive hypotheses, called the **null hypothesis** (denoted H_0) and the **alternative hypothesis** (denoted H_1).

 H_0 and H_1 are complementary hypotheses, in the following sense:

If the parameter space is S, then the null and alternative hypotheses form a partition of S. That is,

 $H_0: \theta \in S_0 \subset S$

 H_1 : $\theta \in S_0^c$ (the complement of S_0 in S).

Examples:

- (i) $H_0: \theta = 0$ vs. $H_1: \theta \neq 0$, where the parameter space is \mathbb{R} .
- (ii) $H_0: \theta \leq 0$ vs. $H_1: \theta > 0$, where the parameter space is \mathbb{R} .
- (iii) $H_0: \theta = 1$ vs. $H_1: \theta = -1$, where the parameter space is $\{-1, 1\}$.
- (iv) $H_0: \theta \in [-1,1]$ vs. $H_1: \theta \notin [-1,1]$, where the parameter space is \mathbb{R} .

1. Test statistics

There are two main ingredients in a hypothesis test. One is a test statistic, the other is a decision rule.

A **test statistic**, similar to an estimator, is just some real-valued function $T_n \equiv T(X_1, \ldots, X_n)$ of your data sample X_1, \ldots, X_n . Clearly, a test statistic is a random variable.

A **decision rule** is a function mapping values of the test statistic into $\{0,1\}$, where

- "0" implies that you accept the null hypothesis $H_0 \Leftrightarrow$ reject the alternative hypothesis H_1 .
- "1" implies that you reject the null hypothesis $H_0 \Leftrightarrow$ accept the alternative hypothesis H_1 .

Example:

Let μ denote the (unknown) population average annual household income in the city of Dallas.

You want to test: H_0 : $\mu = \$100,000$ vs. H_1 : $\mu \neq \$100,000$.

Let your test statistic be $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, the average income of n randomly-drawn households.

There are many different possible decision rules. Consider the following decision rules:

- (i) $\mathbb{1}(\bar{X}_n \neq 100,000)$
- (ii) $\mathbb{1}(\bar{X}_n \not\in [50,000,150,000])$
- (iii) $\mathbb{1}(\bar{X}_n \not\in [90,000,110,000])$

Also, there are many possible test statistics, such as: (i) med_n (sample median); (ii) $\max(X_1, \ldots, X_n)$ (sample maximum).

Which ones make the most sense?

Next we consider some common types of hypothesis tests.

2. Likelihood Ratio Test

Let: $X_1, \ldots, X_n \sim i.i.d f(x|\theta)$, and likelihood function $L(\theta|\mathbf{x}) = \prod_{i=1}^n f(x_i|\theta)$.

Define: the **likelihood ratio test statistic** for testing H_0 : $\theta \in S_0$ vs. H_1 : $\theta \in S_0^c$ as

$$\lambda(\boldsymbol{x}) \equiv \frac{\max_{\theta \in S_0} L(\theta|\boldsymbol{x})}{\max_{\theta \in S} L(\theta|\boldsymbol{x})}$$

Where the parameter space is S and $S_0^c \equiv S \setminus S_0$. $\boldsymbol{x} = (x_1, \dots, x_n)$ is the realized sample. The numerator of $\lambda(\boldsymbol{x})$ is the "restricted" likelihood function, and the denominator is the unrestricted likelihood function.

The support of the LR test statistic is [0, 1].

Intuitively speaking, if H_0 is true (i.e., $\theta \in S_0$), then $\lambda(\boldsymbol{x})$ will be close to 1 (since the restriction of $\theta \in S_0$ will not bind). However, if H_0 is false, then $\lambda(\boldsymbol{x})$ can be small (close to zero).

So an LR test should be one which rejects H_0 when $\lambda(x)$ is small enough.

A Likelihood Ratio Test (LRT) is a test where we reject the null hypothesis if $\lambda(\boldsymbol{x}) \leq c$, where c is any number satisfying $0 \leq c \leq 1$. In another words, a Likelihood Ratio Test consists of the test statistic $\lambda(\boldsymbol{x})$, as well as the decision rule that we reject the null hypothesis whenever $\lambda(\boldsymbol{x}) \leq c$.

2.1. Example: Normal LRT

$$X_1, \ldots, X_n \sim^{\text{i.i.d}} \mathcal{N}(\theta, 1)$$

Test H_0 : $\theta = 2$ vs. H_1 : $\theta \neq 2$.

Here, $S_0 = \{2\}$ and $S = \mathbb{R}$.

$$\lambda(\boldsymbol{x}) = \frac{\max_{\theta \in S_0} L(\theta|\boldsymbol{x})}{\max_{\theta \in S} L(\theta|\boldsymbol{x})}$$
$$= \frac{L(2|\boldsymbol{x})}{L(\hat{\theta}_{MLE}|\boldsymbol{x})}$$

Maximizing the unrestricted likelihood is exactly the Maximum Likelihood Estimator (MLE). Therefore $\hat{\theta}_{MLE} = \bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$ is the MLE for θ .

$$\lambda(\boldsymbol{x}) = \frac{L(2|\boldsymbol{x})}{L(\hat{\theta}_{MLE}|\boldsymbol{x})}$$

$$= \frac{(2\pi)^{-n/2} \exp\left(-\frac{1}{2} \sum_{i} (x_i - 2)^2\right)}{(2\pi)^{-n/2} \exp\left(-\frac{1}{2} \sum_{i} (x_i - \bar{x}_n)^2\right)}$$

$$= \exp\left(-\frac{1}{2} \sum_{i=1}^{n} (x_i - 2)^2 + \frac{1}{2} \sum_{i=1}^{n} (x_i - \bar{x}_n)^2\right)$$

$$= \exp\left(-\frac{n}{2} (\bar{x}_n - 2)^2\right)$$

More generally, test H_0 : $\theta = \theta_0$ vs. H_1 : $\theta \neq \theta_0$. The likelihood ratio test statistic is:

$$\lambda(\boldsymbol{x}) = \exp\left(-\frac{n}{2}(\bar{x}_n - \theta_0)^2\right)$$

For this to be a test, we need to specify the decision rule: $\mathbb{1}(\lambda(\boldsymbol{x}) \leq c)$, which we will do so later.

2.2. Example: Uniform LRT

 $X_1, \ldots, X_n \sim^{\text{i.i.d}} U[0, \theta].$

2.2.1. Null hypothesis is a point, S_0 is a singleton

Test $H_0: \theta = 2$ vs. $H_1: \theta \neq 2$.

Here, $S_0 = \{2\}$ and $S = (0, \infty)$.

The likelihood function $L(\theta|\mathbf{x})$ is:

$$L(\theta|\mathbf{x}) = \begin{cases} \left(\frac{1}{\theta}\right)^n & \text{if } \max(x_1, \dots, x_n) \le \theta \\ 0 & \text{if } \max(x_1, \dots, x_n) > \theta \end{cases}$$

The denominator of the LRT statistic is the unrestricted likelihood, $\max_{\theta \in S} L(\theta | \boldsymbol{x})$, which is maximized at $\hat{\theta}_{MLE} = \max(x_1, \dots, x_n)$. Hence the denominator of the LR statistic is $L(\hat{\theta}_{MLE} | \boldsymbol{x}) = \left(\frac{1}{\max(x_1, \dots, x_n)}\right)^n$.

The numerator of the LRT statistic is the restricted likelihood, $\max_{\theta \in S_0} L(\theta | \boldsymbol{x})$:

$$L(2|\mathbf{x}) = \begin{cases} \left(\frac{1}{2}\right)^n & \text{if } \max(x_1, \dots, x_n) \le 2\\ 0 & \text{if } \max(x_1, \dots, x_n) > 2. \end{cases}$$

Putting them together,

$$\lambda(\boldsymbol{x}) = \begin{cases} 0 & \text{if } \max(x_1, \dots, x_n) > 2\\ \left(\frac{\max(x_1, \dots, x_n)}{2}\right)^n & \text{otherwise} \end{cases}$$

To complete the LR test: we have to specify the decision rule, which is to reject the null if $\lambda(\boldsymbol{x})$ is small enough, say $\mathbb{1}(\lambda(\boldsymbol{x}) \leq c)$. We see that the critical region depends on the data only through $\max(x_1, \ldots, x_n)$.

Plot the graph depicting the rejection region (it will consist of two disconnected parts). We will reject the null if either $\max(x_1, \ldots, x_n) > 2$, or $\max(x_1, \ldots, x_n) \leq 2c^{1/n}$.

2.2.2. Null hypothesis is an interval, S_0 is an interval

Test $H_0: \theta \in [0, 2]$ vs. $H_1: \theta > 2$.

Here, $S_0 = (0, 2]$ and $S = (0, \infty)$.

The unrestricted likelihood is the same as before. But the restricted likelihood is

$$\max_{\theta \in (0,2]} L(\theta | \boldsymbol{x}) = \begin{cases} \left(\frac{1}{\max(x_1, \dots, x_n)}\right)^n & \text{if } \max(x_1, \dots, x_n) \leq 2\\ 0 & \text{otherwise.} \end{cases}$$

SO

(1)
$$\lambda(\boldsymbol{x}) = \begin{cases} 1 & \text{if } \max(x_1, \dots, x_n) \leq 2 \\ 0 & \text{otherwise.} \end{cases}$$

The LR test is $\mathbb{1}(\lambda(\boldsymbol{x}) \leq c)$. Therefore for 0 < c < 1, we reject the null if $\max(x_1, \ldots, x_n) > 2$. If c = 1, then we will always reject the null, regardless of what data we observe. If c = 0, then we will never reject the null. Later, we will talk about how to set c, but in this example, the only sensible choice is $c \in (0, 1)$, but all $c \in (0, 1)$ leads to the same decision rule.

Therefore the test of $H_0: \theta \in [0, \theta_0]$ vs. $H_1: \theta > \theta_0$ has a very simple form, which is to reject the null hypothesis whenever $\max(x_1, \ldots, x_n) > \theta_0$.

2.3. Exponential LRT

Let X_1, \ldots, X_n be a random sample from an exponential population with pdf:

$$f(x|\theta) = \begin{cases} e^{-(x-\theta)} & x \ge \theta \\ 0 & x < \theta \end{cases}$$

where $-\infty < \theta < \infty$

The likelihood function is:

$$L(\theta|\mathbf{x}) = \begin{cases} e^{n\theta - \sum x_i} & \min(x_1, \dots, x_n) \ge \theta \\ 0 & \text{otherwise} \end{cases}$$

Consider testing $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$.

The unrestricted maximum of $L(\theta|\mathbf{x})$ is achieved at $\theta = \min(x_1, \dots, x_n)$. Therefore $\max_{\theta \in (-\infty, \infty)} L(\theta|\mathbf{x}) = e^{n \min(x_1, \dots, x_n) - \sum x_i}$

Maximizing $L(\theta|\mathbf{x})$ with respect to the parameter space $\theta \in (-\infty, \theta_0]$,

$$\max_{\theta \in (-\infty, \theta_0]} L(\theta | \boldsymbol{x}) = \begin{cases} e^{n\theta_0 - \sum x_i} & \min(x_1, \dots, x_n) \ge \theta_0 \\ e^{n \min(x_1, \dots, x_n) - \sum x_i} & \min(x_1, \dots, x_n) < \theta_0 \end{cases}$$

Therefore,

$$\lambda(\boldsymbol{x}) = \begin{cases} e^{n(\theta_0 - \min(x_1, \dots, x_n))} & \min(x_1, \dots, x_n) > \theta_0 \\ 1 & \min(x_1, \dots, x_n) \le \theta_0 \end{cases}$$

Try plotting the LR test statistic $\lambda(\boldsymbol{x})$ as a function of $\min(x_1,\ldots,x_n)$. We reject the null hypothesis when $e^{n(\theta_0-\min(x_1,\ldots,x_n))} \leq c$, that is, when $\min(x_1,\ldots,x_n) \geq \theta_0 - \log c/n$, i.e. when $\min(x_1,\ldots,x_n)$ is sufficiently larger than θ_0 . Note that $\log c$ is a negative number because $0 \leq c \leq 1$.

3. Wald Tests (t-test)

Another common way to generate test statistics is to focus on statistics which are either normally distributed or asymptotically normal distributed, under H_0 . For example, regression coefficients, Maximum Likelihood estimators, sample mean, sample variances, etc.

Suppose that the population parameter of interest is θ , and that we have an estimator $\hat{\theta}_n$ for θ that is consistent and asymptotically Normal, with some asymptotic

variance V. That is, $\sqrt{n}(\hat{\theta}_n - \theta) \stackrel{d}{\to} \mathcal{N}(0, V)$ as $n \to \infty$. We want to test $H_0: \theta = \theta_0$. Then, if the null were true:

(2)
$$t(\boldsymbol{x}) \equiv \frac{\sqrt{n}(\hat{\theta}_n - \theta_0)}{\sqrt{V}} \stackrel{d}{\to} \mathcal{N}(0, 1).$$

The quantity $\frac{\sqrt{n}(\hat{\theta}_n - \theta_0)}{\sqrt{V}}$ is called the *t*-test statistic, which is approximately Normal when *n* is large.

To fix idea, take $\theta \equiv \mathbb{E}[X]$ to be the (unknown) population mean, and the estimator for θ is the sample mean $\hat{\theta}_n = \frac{1}{n} \sum_{i=1} X_i$. Then, the Central-Limit Theorem implies that $\sqrt{n}(\bar{X}-\theta_0) \stackrel{d}{\to} \mathcal{N}(0,\sigma^2)$, and the t-test statistic becomes $\frac{\sqrt{n}(\bar{X}-\theta_0)}{\sigma}$ or $\frac{\bar{X}-\theta_0}{\sigma/\sqrt{n}}$.

Know that the t-test statistic here can be applied more generally to any asymptotically Normal estimator $\hat{\theta}_n$ of θ such that $\sqrt{n}(\hat{\theta}_n - \theta) \stackrel{d}{\to} \mathcal{N}(0, V)$ as $n \to \infty$.

In most cases, the asymptotic variance V will not be known, and will also need to be estimated. However, if we have an estimator \hat{V}_n such that $\hat{V}_n \stackrel{p}{\to} V$, then the statement

$$\frac{\sqrt{n}(\hat{\theta}_n - \theta_0)}{\sqrt{\hat{V}}} \stackrel{d}{\to} \mathcal{N}(0, 1)$$

still holds (using the continuous mapping theorem and the Slutsky theorem). For hypothesis tests involving the population mean, the t-test statistic becomes $\frac{\bar{X}-\theta_0}{\sqrt{S^2/n}}$, where S^2 is the sample variance.

To see how the t statistic can be used for hypothesis testing, we consider two cases:

(i) Two-sided (two-tailed) test: $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$.

Under H_0 : the t-test statistic is approximately (asymptotically) $\mathcal{N}(0,1)$ Under H_1 : assume that the true value is some $\theta_1 \neq \theta_0$. Then the t-statistic can be

written as:

$$t = \frac{\sqrt{n}(\hat{\theta}_n - \theta_0)}{\sigma} = \frac{\sqrt{n}(\hat{\theta}_n - \theta_1)}{\sigma} + \frac{\sqrt{n}(\theta_1 - \theta_0)}{\sigma}.$$

The first term $\stackrel{d}{\to} \mathcal{N}(0,1)$, but the second (non-stochastic) term diverges to ∞ or $-\infty$, depending on whether the true θ_1 exceeds or is less than θ_0 . Hence the t-statistic diverges to $-\infty$ or ∞ with probability 1.

Hence, in this case, your test should be $\mathbb{1}(|t| > c)$, where c should be some number in the tails of the $\mathcal{N}(0,1)$ distribution. Later, we will discuss how to choose c.

(ii) One-sided test: $H_0: \theta \leq \theta_0$ vs. $H_1: \theta > \theta_0$.

Here the null hypothesis is $\theta \in (-\infty, \theta_0]$

Just as for the two-sided test, let's consider the test statistic $t \equiv \frac{\sqrt{n}(\hat{\theta}_n - \theta_0)}{\sigma}$.

Suppose H_0 is true and $\theta < \theta_0$, then t diverges to $-\infty$ with probability 1 as $n \to \infty$.

Suppose H_0 is true and $\theta = \theta_0$, then t is approximately $\mathcal{N}(0,1)$.

Suppose H_1 is true, t diverges to ∞ with probability 1 as $n \to \infty$.

Hence, we should reject the null when the test statistic is reasonably large. That is, your test should be $\mathbb{1}(t > c)$, for some c.

Both LR and Wald tests are applicable in some scenarios, for example, in the example at the beginning where we test the population mean of a Normal distribution, we could either use the LRT or the Wald test. Another family of test statistics is the Lagrange Multiplier test or the Score test.

LRT requires both the restricted and unrestricted models to be estimated, which is more complicated than the Wald test, especially for a null hypothesis like H_0 : $\theta \leq \theta_0$. It also requires that we correctly specify the likelihood function. Wald test seems simpler but it does require the estimator to be asymptotically Normal, and having a consistent estimate of the asymptotic variance.

3.1. Multivariate t-test

The Wald test can be used to test a hypothesis on multiple parameters. Let $\vec{\theta}$ be a k-dimensional estimator that is asymptotically Multivariate Normal:

$$\sqrt{n}(\vec{\theta}_n - \vec{\theta}) \stackrel{d}{\to} \mathcal{N}(\mathbf{0}, \Sigma).$$

The MLE with multiple parameters satisfies this. Under $H_0: \vec{\theta} = \vec{\theta}_0$, then we have

$$\sqrt{n}(\vec{\theta}_n - \vec{\theta}_0) \stackrel{d}{\rightarrow} \mathcal{N}(\mathbf{0}, \Sigma)$$

The multivariate version of the t-test statistic is the following quadratic form:

$$t_n \equiv n \cdot (\vec{\theta}_n - \vec{\theta}_0)^T \Sigma^{-1} (\vec{\theta}_n - \vec{\theta}_0)$$

This t-test statistics is motivated by the following result. If y is a $k \times 1$ random variable and $y \sim \mathcal{N}(\mu, \Sigma)$, then

$$(y-\mu)^T \Sigma^{-1} (y-\mu) \sim \chi_k^2$$

Intuitively, sum of squares of k standardized Normally distributed variables have a χ_k^2 distribution. As such, under the null hypothesis, $t_n \stackrel{d}{\to} \chi_k^2$. Since χ^2 takes only positive values, the rejection region of the test would take the form: $\mathbb{1}(t_n > c)$.

3.2. Wald test for MLE

Suppose that $\hat{\theta}_{MLE}$ is a MLE of θ given the data x_1, \ldots, x_n generated from $f(x_1, \ldots, x_n | \theta)$.

$$\sqrt{n}(\hat{\theta}_{MLE} - \theta) \xrightarrow{d} \mathcal{N}(0, \mathcal{I}(\theta)^{-1})$$
 as $n \to \infty$

Where $\mathcal{I}(\theta) = \mathbb{E}\left[\left(\frac{\partial \log f(X_1,\dots,X_n|\theta)}{\partial \theta}\right)^2\right]$ is the Fisher's information number. For

$$x_1, \ldots, x_n$$
 generated i.i.d from $f(x|\theta)$, we can further simplify: $\mathcal{I}(\theta) = n \mathbb{E}\left[\left(\frac{\partial \log f(X|\theta)}{\partial \theta}\right)^2\right]$.

A consistent estimator of
$$\mathcal{I}(\theta) = n \mathbb{E}\left[\left(\frac{\partial \log f(X|\theta)}{\partial \theta}\right)^2\right]$$
 is $\hat{I}(\hat{\theta}_{MLE}) = \sum_{i=1}^n \left(\frac{\partial \log f(x_i|\theta)}{\partial \theta}\Big|_{\theta = \hat{\theta}_{MLE}}\right)^2$.

The t-test statistic becomes $\sqrt{n}(\hat{\theta}_{MLE} - \theta_0)\sqrt{\hat{I}(\hat{\theta}_{MLE})}$ for testing the null hypothesis that $H_0: \theta = \theta_0$.

¹If the covariance matrix is unknown and has to be estimated, then see Hotelling T-squared statistic.