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1. Continuous Mapping Theorem

Suppose that the sequence of random variable Yn converges in probability to θ as
n → ∞. Then continuous functions of Yn also converge to functions of θ. That
is,

Yn
p−→ θ. If g is a continuous function, then g(Yn)

p−→ g(θ).

Yn
a.s−→ θ. If g is a continuous function, then g(Yn)

a.s−→ g(θ).

Suppose that the sequence of random variable Yn converges in distribution to Y as
n → ∞. Then continuous functions of Yn also converge to functions of Y . That
is,

Yn
d−→ Y . If g is a continuous function, then g(Yn)

d−→ g(Y ).

1.1. Example: sample standard deviation

Previously we saw that the sample variance S2 = 1
n−1

∑n
i=1(Xi − X̄)2 converges in

probability to σ2 ≡ Var(Xi). Let s =
√

1
n−1

∑n
i=1(Xi − X̄)2 be the sample standard

deviation. It follows from the continuous mapping theorem that s converges in

probability to σ because
√
S2 p−→

√
σ2.

Although the sample standard deviation S is a consistent estimator of σ, it is a
biased estimator of σ.

From Jensen’s inequality, if g is a convex function, then

E[g(X)] ≥ g(E[X])

E[−g(X)] ≤ −g(E[X])

If g is a convex function, then −g is a concave function. For a strictly concave
function g, we have E[g(X)] < g(E[X]). Since f(x) =

√
x is a concave function, and

E[S2] = σ2, it follows that
1
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E[
√
S2] <

√
E[S2]

E[S] <
√
σ2 = σ

Therefore, the sample standard deviation is a biased estimator of the true standard
deviation (it underestimates).

2. Central Limit Theorem

Let X1, X2, . . . be a sequence of i.i.d random variables with E[Xi] = µ and 0 <
Var(Xi) = σ2 < ∞. Define X̄n = 1

n

∑n
i=1Xi. The Law of Large Numbers tells us

that X̄ converges in probability to µ.1 That is, X̄ − µ→p 0

Now consider
√
n(X̄ − µ). As n → ∞, we have two conflicting convergence: (i)

X̄ − µ → 0 in probability, (ii) but
√
n → ∞. Somehow, they balance each other

out in the sense that
√
n(X̄ − µ) converges to a random variable as n → ∞. This

random variable is N (0, σ2), regardless of what the underlying distribution of X
is.

Central Limit Theorem (Lindeberg-Levy):
√
n(X̄n − µ)/σ converges in distribution

to N (0, 1) as n → ∞. That is, limn→∞ P (
√
n(X̄n − µ)/σ ≤ x) =

∫ x
−∞

1√
2π
e−y

2/2 dy

for all x ∈ R. Equivalently,
√
n(X̄n − µ) converges in distribution to N (0, σ2) as

n→∞.

The sample mean is root-n consistent: (X̄n − µ)/σ decays to zero at rate 1√
n

(in

probability) as n → ∞. Equivalently, scaling by
√
n yields a non-degenerate limit.

Under the Lindeberg–Lévy CLT, the only assumptions are i.i.d. with finite variance.
Some texts (e.g., Casella–Berger) assume the moment generating function exists in
a neighborhood of 0 to give an mgf-based proof; this is a proof technique, not a
requirement of the theorem itself.

2.1. Asymptotic approximation

When the underlying data-generating process is Normal, we know that the sample
mean X̄n is distributed according to N (µ, σ

2

n
).

What if the data-generating process is not Normally distributed. For example,
if Xi is Uniformly distributed, what is the distribution of the sample mean X̄n?
In practice, we do not know the data-generating process, which is why CLT is
important.

1Which also implies that X̄ converges in distribution to the (degenerate) distribution µ (a
constant).
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We can use Asymptotic Approximation to approximately derive the distribution of
X̄n. Starting with the result of the CLT:

√
n(X̄n − µ)

d−→ N (0, σ2)

X̄ ≈ N
(
µ,
σ2

n

)
Rearranging, X̄ is approximately distributed as N (µ, σ

2

n
), when n is very large. The

goal of asymptotic approximations is to appeal to asymptotically large n in order
to infer the distribution of a statistic.

Even when n is finite and not large, we can usually take N (µ, σ
2

n
) to approximate

the distribution of X̄. We can use simulations to see that this approximation holds
remarkably well in many cases.

2.2. Simulating the Central Limit Theorem

Take Xi to be exponentially distributed, i.e. the pdf of Xi is f(x) = λe−λx.

According to the CLT,
√
n(X̄ − 1

λ
) →d N (0, 1

λ2
), where E[X] = 1

λ
and Var(X) =

1
λ2

. Therefore the asymptotic approximation for the distribution of X̄ is X̄ ∼
N ( 1

λ
, 1
nλ2

).

We can see from the monte carlo simulation that even when the sample size is not
too large (n = 100), the asymptotic approximation from the CLT is remarkably
accurate. Now if we repeat the above with a smaller sample size, n = 10, then we
see that the CLT breaks down (especially for skewed/heavy-tailed data). We can
repeat the above simulation with other data-generating process.

2.3. Berry–Esseen inequality (how close is CLT at finite n?)

Let X1, . . . , Xn be i.i.d. with E[Xi] = µ, Var(Xi) = σ2 ∈ (0,∞), and finite third
absolute central moment

ρ ≡ E
[
|Xi − µ|3

]
< ∞.

Then there exists a universal constant C (one may take C ≤ 0.56; sharper values
are known) such that

sup
x∈R

∣∣∣∣∣P
(√

n (X̄n − µ)

σ
≤ x

)
− Φ(x)

∣∣∣∣∣ ≤ C ρ

σ3
√
n
.

Thus the CLT error decays at the rate O(n−1/2), with the constant governed by the
standardized third absolute moment ρ/σ3 (often called the “Lyapunov ratio”).
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Standardize X to Z = (X − µ)/σ. Then

ρ

σ3
=

E|X − µ|3

σ3
= E|Z|3.

Thus the Lyapunov ratio, ρ/σ3, is the third absolute standardized moment—a di-
mensionless index of tail heaviness. Larger values indicate heavier tails and looser
Berry–Esseen bounds, leading to a slower normal approximation (a larger sample
size is needed to achieve a worst-case tolerable error). Recall that E[Z3] is a mea-
sure of skewness. The Lyapunov ratio is always larger than the absolute value of
skewness, E|Z|3 ≥

∣∣E[Z3]
∣∣.

The Berry–Esseen inequality implies that to guarantee a uniform CLT error ≤ ε it
suffices to take

n ≥
(
C

ε
· ρ
σ3

)2

=

(
C

ε
· E|Z|3

)2

.

Although this is conservative (worst-case, uniform in x), it cleanly shows how tail
weight control the needed sample size.

Distribution E|Z|3 Required n for ε = 0.10, C = 0.56
Bernoulli(1/2) 1 32

Uniform(0, 1) 3
√

3
4

(≈ 1.299) 53
Exponential (any rate λ) 12

e
− 2 (≈ 2.415) 183

3. Slutsky’s theorem

Suppose Xn
d−→ X and Yn

p−→ a for a constant a ∈ R. Then

Xn + Yn
d−→ X + a, YnXn

d−→ aX,
Xn

Yn

d−→ X

a
if a 6= 0.

More generally, for any function g : R2 → R that is continuous at every (x, a) with
x in the support of X,

g(Xn, Yn)
d−→ g(X, a).

The Slutsky’s theorem can be used to show that the biased sample variance S̃2 =
1
n

∑n
i=1(Xi − X̄)2 is nevertheless a consistent estimator of σ2 ≡ Var(Xi).

S2 p−→ σ2

n− 1

n
S2 p−→ σ2 , as n→∞

4
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From CLT, we know that
√
n(X̄n − µ)/σ

d−→ N (0, 1). What is the limiting distribu-
tion if we replace σ by the sample standard deviation Sn. We have seen previously

that S2
n

p−→ σ2, therefore Sn
p−→ σ by the Continuous Mapping Theorem. By applying

Slutsky’s Theorem to
√
n(X̄n − µ)

d−→ N (0, σ2) and Sn
p−→ σ,

√
n(X̄n − µ)

Sn

d−→ N (0, 1)

Hence, for large n, the distribution of X̄ is approximately N (µ, S
2

n
).2 Now recall

that if Xi are Normal, then
√
n(X̄n−µ)
Sn

∼ tn−1 exactly, and as n → ∞, tn−1
d−→

N(0, 1).

Using Slutsky’s theorem, we can also show that:

n1/3(X̄n − µ)/σ = n−1/6n1/2(X̄n − µ)/σ → 0

4. Delta method

We have derived the asymptotic distribution of the sample mean, that is, X̄ ≈
N (µ, σ

2

n
). What about the sample variance, other statistics and estimator?

Let X1, . . . , Xn be iid from a distribution. Suppose we are interested in g(X̄). The
Taylor’s series of g at a is:

g(x) = g(a) + g′(a)(x− a) +R(x, a)(1)

R(x, a) is the remainder term. The remainder term will be small compared to g(a)+
g′(a)(x− a) when x is close to a, and can be ignored. That is, limx→aR(x, a)/(x−
a) = 0. As a shorthand, we usually write g(x) = g(a) + g′(a)(x − a) + o(x − a),
where o(x− a) is a term that is dominated by x− a in the limit.

If we substitute x with X̄ and a with µ ≡ E[Xi],

g(X̄) = g(µ) + g′(µ)(X̄ − µ) + o(X̄ − µ)(2)

In the limit as n→∞, we can show that
√
n · o(X̄ − µ)→ 0. Therefore for large n,

we have:

2However we still do not know what µ is, so how can this result be useful? Well, in the
framework of Hypothesis Testing which we will talk about later, if we conjecture that µ = µ0, then
we would know the entire sampling distribution of X̄, and see whether our realized sample mean
is consistent with that sampling distribution.
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√
n(g(X̄)− g(µ)) ≈ g′(µ)

√
n(X̄ − µ)(3)

Since
√
n(X̄−µ)

d−→ N (0, σ2) and g′(µ)
√
n(X̄−µ)

d−→ N (0, g′(µ)2σ2), it follows that
√
n(g(X̄) − g(µ))

d−→ N (0, g′(µ)2σ2). Therefore, the asymptotic approximation of
g(X̄) is:

g(X̄) ≈ N
(
g(µ),

g′(µ)2σ2

n

)
(4)

Delta Method. Let Yn be a sequence of random variances that satisfies
√
n(Yn −

θ) → N (0, σ2) in distribution. For a given function g such that g′(θ) exists and is
not 0. Then,

√
n(g(Yn)− g(θ))

d−→ N (0, σ2g′(θ)2)(5)

4.1. Example

For example, suppose X1, . . . , Xn are iid Bernoulli(p). Then E[Xi] = p ≡ µ. There-
fore the sample mean X̄ is a consistent and unbiased estimator of p. The variance
is Var(Xi) = p(1− p).

Consider the random variable X̄(1−X̄). This is of interest because it is a (consistent)
estimator for the variance of the Bernoulli distribution. We know this by applying
the continuous mapping theorem. In fact, the sample variance can be expressed
as S2 = n

n−1
X̄(1 − X̄) for the Bernoulli distribution. Let g(x) = x(1 − x), then

g′(x) = 1− 2x.

First note that E[Xi] = p and Var(Xi) = p(1− p), by CLT:

√
n(X̄ − p) d−→ N (0, p(1− p)) as n→∞(6)

By the Delta method, we can derive the sampling distribution of X̄(1 − X̄) as
n→∞.

√
n(g(X̄)− g(p))

d−→ N (0, p(1− p)g′(p)2)(7)
√
n
(
X̄(1− X̄)− p(1− p)

) d−→ N
(
0, p(1− p)(1− 2p)2

)
(8)

Therefore the asymptotic distribution of X̄(1−X̄) is X̄(1−X̄) ≈ N
(
p(1− p), p(1−p)(1−2p)2

n

)
.
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Figure 1. p(1− p)(1− 2p)2 as a function of p

The asymptotic variance of X̄(1 − X̄) is p(1−p)(1−2p)2

n
. The asymptotic variance of

X̄(1−X̄) is highest around p = 0.25 and p = 0.75, see Figure 1. Although X̄(1−X̄) is
a consistent estimator for the variance of the Bernoulli random variable, the precision
of this estimator varies. It is least precise around p = 0.25 and p = 0.75.

4.2. Another example

Suppose now we are interested in p
1−p . This quantity is called the odds ratio. By

the Continuous Mapping Theorem, a natural (consistent) estimator for p
1−p would

be X̄
1−X̄ .

Use Delta Method to obtain the asymptotic distribution of X̄
1−X̄ . From CLT:

√
n(X̄ − p) d−→ N (0, p(1− p)) as n→∞

Now let g(x) = x
1−x = 1

1−x − 1. Compute g′(x) = − 1
(1−x)2

.

√
n(g(X̄)− g(p))

d−→ N (0, p(1− p)g′(p)2)(9)

√
n

(
X̄

1− X̄
− p

1− p

)
d−→ N

(
0,

p

(1− p)3

)
(10)

Therefore, the asymptotic distribution of X̄
1−X̄ is X̄

1−X̄ ≈ N
(

p
1−p ,

p
n(1−p)3

)
.

4.3. Second-order Delta method

What is the asymptotic distribution of X̄2, without assuming Normality?
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√
n(X̄ − µ)→d N (0, σ2) from CLT

√
n(X̄2 − µ2)→d N (0, (2µ)2σ2) from Delta Method

Hence, X̄2 ≈ N (µ2, 4µ2σ2

n
). However, what if µ = 0? The asymptotic variance

can’t be zero! Delta method fails here because g′(µ) = 0. We would need to use
second-order Delta Method.

Delta method requires that g′(µ) 6= 0, which fails in some cases. Consider the
second-order Taylor expansion of the function g(x) about µ:

g(X̄) = g(µ) + g′(µ)(X̄ − µ) +
g′′(µ)(X̄ − µ)2

2
+R(X̄, µ)(11)

Where the remainder term R(X̄, µ) → 0 as X̄ → µ, and does so at a rate faster
than (X̄ − µ)2. When g′(µ) = 0, we have:

g(X̄)− g(µ) ≈ g′′(µ)(X̄ − µ)2

2
(12)

when n is large. Since
√
n(X̄ − µ)/σ

d−→ N (0, 1), we have n(X̄ − µ)2/σ2 d−→ χ2
1 by

the Continuous Mapping Theorem. Hence,

n(g(X̄)− g(µ))
d−→ g′′(µ)σ2

2
χ2

1(13)

Example:

Going back to our example that finding the asymptotic distribution of X̄2 when
µ = 0,

√
n(X̄ − 0)→d N (0, σ2) from CLT

nX̄2 →d σ
2χ2

1 from second-order Delta Method

Now χ2
1 is equivalent to the Gamma distribution with shape parameter 1

2
, and a

scale parameter of 2. That is, χ2
1 = Gamma(1

2
, 2). Moreover, c × Gamma(1

2
, 2) =

Gamma(1
2
, 2c) for a constant c. Therefore,

8
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X̄2 ≈ σ2

n
χ2

1 asymptotic approximation

X̄2 ≈ Gamma

(
1

2
,
2σ2

n

)
When µ 6= 0, the asymptotic distribution is X̄2 ≈ N (µ2, 4µ2σ2

n
), and X̄2 converges

to µ2 at a rate of 1√
n
. However, if µ = 0, then X̄2 ≈ σ2

n
χ2

1, and X̄2 converges much

faster to µ2, at a rate of 1
n
. For example, if we consider

√
nX̄2 when µ = 0, then√

nX̄2 would converge to zero in probability.

4.4. Multivariate Delta method

Given a sequence of random vectors Yn, if we have:
√
n(Yn − θ)

d−→ N (0,Σ)

where
d−→ denotes convergence in distribution, N (0,Σ) is a multivariate normal

distribution with mean vector 0 and variance-covariance matrix Σ, and θ is a
p-vector of parameters, the multivariate Delta Method states that for a function
g : Rp → Rq that is continuously differentiable at θ, the following asymptotic dis-
tribution holds: √

n(g(Yn)− g(θ))
d−→ N (0,JgΣJ

T
g )

where Jg is the Jacobian matrix of g evaluated at θ, which is a q × p matrix where
the element in the ith row and jth column is

[Jg]ij =
∂gi(θ)

∂θj

Jg =


∂g1(θ)
∂θ1

∂g1(θ)
∂θ2

· · · ∂g1(θ)
∂θp

∂g2(θ)
∂θ1

∂g2(θ)
∂θ2

· · · ∂g2(θ)
∂θp

...
...

. . .
...

∂gq(θ)

∂θ1

∂gq(θ)

∂θ2
· · · ∂gq(θ)

∂θp


Note that when p = q = 1, this reduces to the univariate Delta Method.

4.5. Application of Multivariate Delta Method

Delta method underlies computation of standard errors in many statistical pack-
ages. See: https://cran.r-project.org/web/packages/modmarg/vignettes/

delta-method.html
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To see an example where we apply the multivariate Delta Method, let the data-
generating process for Y1, . . . , Yn be P (Yi = 1|Xi = xi) = Φ(β0 + β1xi). This is
the Probit model for a binary outcome Yi ∈ {0, 1}, where the probability of Yi = 1
given a covariate Xi = xi is modeled as P (Yi = 1|Xi = xi) = Φ(β0 + β1xi), where
Φ(·) is the cdf of the standard normal distribution, and β = (β0, β1)T are the model

parameters. If we let Φ be the logistic cdf, i.e. Φ(t) = et

1+et
, then we have a Logit

model.

Later on, we will see that the maximum-likelihood estimator (β̂0, β̂1) has an as-

ymptotic multivariate Normal distribution. Specifically, let β̂n = (β̂0, β̂1)T be the
maximum likelihood estimators (MLEs) of the parameters. Under standard regu-
larity conditions, the MLEs are asymptotically normally distributed:

√
n(β̂n − β)

d−→ N (0,Σ),

where Σ is the asymptotic variance-covariance matrix of the estimators.

After estimating the parameters, we wish to calculate the predicted probability that
the outcome is 1 at a given value x, P̂ (Y = 1|X = x) = Φ(β̂0 + β̂1x). In another

words, we wish to derive the asymptotic distribution of Φ(β̂0 + β̂1x).

Let g(β) = Φ(β0 + β1x), we will use multivariate Delta method to derive
√
n(g(β̂)− g(β))

d−→ N (0,JgΣJ
T
g )

The Jacobian of g(β) with respect to β = (β0, β1) is:

Jg =
[
∂g
∂β0

∂g
∂β1

]
.

∂g

∂β0

= φ(β0 + β1x),

and
∂g

∂β1

= xφ(β0 + β1x),

where φ(·) is the pdf of Φ.

Thus, the Jacobian matrix is:

Jg =
[
φ(β0 + β1x) xφ(β0 + β1x)

]
.

By the multivariate Delta Method, the asymptotic distribution of the predicted
probability is:

10
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√
n(Φ(β̂0 + β̂1x)− Φ(β0 + β1x))

d−→ N (0,JgΣJ
T
g )

Even though β0, β1 is not known in the formula for the asymptotic variance, we can
plug in any consistent estimator of β0, β1, which is justified from Slutsky’s and the
Continuous Mapping Theorem. Note that both Slutsky’s and the Continuous Map-
ping Theorem are similarly defined for random vectors or matrices. For instance,
JgΣJ

T
g is a (scalar) continuous function of β = (β0, β1). Thus if β̂ converges in

probability to β, then ĴgΣĴ
T
g also converges in probability to JgΣJ

T
g .

Another quantity of interest is the marginal effect,

∂Φ(β̂0 + β̂1x)

∂x
= β̂1φ(β̂0 + β̂1x)

Whose asymptotic distribution can be computed following the steps above.
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