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1. Continuous Mapping Theorem

Suppose that the sequence of random variable X, converges in probability to 6 as
n — o0o0. Then continuous functions of X, also converge to functions of . That
is,

X, & 0. If g is a continuous function, then g(X,) 2 g(f).
X, £% 0. If g is a continuous function, then g(X,) <> g(0).

Suppose that the sequence of random variable X,, converges in distribution to X as
n — oo. Then continuous functions of X,, also converge to functions of X. That
is,

X, % X If g is a continuous function, then 9(Xy) 4, g9(X).

1.1. Example: sample standard deviation

Previously we saw that the sample variance 5* = —= %" (X; — X)? converges in
probability to 0% = Var(X;). Let s = \/ﬁ S (X; — X)? be the sample standard

deviation. It follows from the continuous mapping theorem that s converges in
probability to o because v/S? 2 v/o2.

Although the sample standard deviation S is a consistent estimator of o, it is a
biased estimator of o.

From Jensen’s inequality, if ¢ is a convex function, then

If g is a convex function, then —g is a concave function. For a strictly concave
function g, we have E[g(X)] < ¢g(E[X]). Since f(z) = y/z is a concave function, and
E[S?] = o2, it follows that
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E[vS?] < \/E[S?]
E| <Vo?

a3

E[

A2

<o

Therefore, the sample standard deviation is a biased estimator of the true standard
deviation (it underestimates).

2. Central Limit Theorem

Let X1, Xy, ... be asequence of i.i.d random variables with E[X;] = pand Var(X;) =
0? < oo. Define X,, = %2?21 X;. The Law of Large Numbers tells us that X

converges in probability to p.'! That is, X — pu —? 0

However now consider /n(X — ). As n — oo, we have two conflicting convergence:
(i) X — o — 0 in probability, (i) but \/n — co. Magically, they balance each other
out in the sense that /n(X — i) converges to a random variable as n — oo. This
random variable is N(0,0?), regardless of what the underlying distribution of X
is.

Central Limit Theorem (Lindeberg-Levy): /n(X, — p)/o converges in distribution
to N'(0,1) as n — oo. That is, denote G, (z) as the cdf of \/n(X,, — u)/o, then we
have limy, o Go(2) = [ \/%6_92/2 dy for all z € R. Equivalently, /n(X,, — i)
converges in distribution to N (0, 0?) as n — oo.

v/n is also called the “rate of convergence” of the sequence X — pu. In another
words, (X — p)/o decays at the same rate to zero as \/Lﬁ A weaker form of CLT
is proven in Casella-Berger, the proof relies on moment generating function and

Taylor’s expansion.
2.1. Asymptotic approximation

When the underlying data-generating process is Normal, we know that the sample
mean X, is distributed according to N (i, ).

What if the data-generating process is not Normally distributed. For example,
if X; is Uniformly distributed, what is the distribution of the sample mean X,,?
In practice, we do not know the data-generating process, which is why CLT is
important.

"Which also implies that X converges in distribution to the (degenerate) distribution p (a
constant).
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We can use Asymptotic Approximation to approximately derive the distribution of
X,. Starting with the result of the CLT:

V(X — ) 5 N(0,0%)
wo (1)

Rearranging, X is approximately distributed as A (y, %2), when n is very large. The
goal of asymptotic approximations is to appeal to asymptotically large n in order
to infer the distribution of a statistic.

Even when n is finite and not large, we can usually take N (u, %2) to approximate
the distribution of X. We can use simulations to see that this approximation holds
remarkably well in many cases.

2.2. Simulating the Central Limit Theorem
Take X; to be exponentially distributed, i.e. the pdf of X; is f(z) = Ae™*.
According to the CLT, /n(X — §) —4 N(0, 55), where E[X] = } and Var(X)

) _ .

%. Therefore the asymptotic approximation for the distribution of X is X ~
11

N (52

We can see from the monte carlo simulation that even when the sample size is not

too large (n = 100), the asymptotic approximation from the CLT is remarkably

accurate. Now if we repeat the above with a smaller sample size, n = 10, then we

see that the CLT breaks down. We can repeat the above simulation other data-

generating process.

3. Slutsky’s theorem
If X, 4 X in distribution, and Y, & a where a is a constant, then

(1) Y, X, % aX in distribution

2) X,+Y, % X + g in distribution

—~

The Slutsky’s theorem can be used to show that the biased sample variance 52 =
LS (X; — X)? is nevertheless a consistent estimator of 62 = Var(X;).
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S22 52

n—1

p
S5 0% Jas n— o0
n

From CLT, we know that v/n(X, — 11)/o <% N'(0,1). What is the limiting distribu-
tion if we replace o by the sample standard deviation 5,,. We have seen previously
that S2 2 o2, therefore S, % o by the Continuous Mapping Theorem. By applying

Slutsky’s Theorem to v/n(X,, — u) 4 N(0,0%) and S, & o,

—\/ﬁ();n —#) 4 N(0,1)

Hence, for large n, the distribution of X is approzimately N (u, %2)2

Using Slutsky’s theorem, we can also show that:

nt3(X, — p) /o =n"Yn2(X, — p))o =0

Similarly,

¥4 (X, — p) /o =n*n*(X, — p))o — 0o
4. Delta method

We have derived the asymptotic distribution of the sample mean, that is, X ~
N(p, ‘;—2) What about the sample variance? Often we are interested in some func-
tions of the sample mean. For example, X2, X, log X.

Let X1,..., X, beiid from a distribution. Suppose we are interested in g(X). The
Taylor’s series of g at a is:

(3) 9(x) = g(a) + ¢'(a)(z — a) + R(z, a)

R(x,a) is the remainder term. The remainder term will be small compared to g(a)+
g'(a)(z — a) when z is close to a, and can be ignored. That is, lim, ., R(z,a)/(x —
a) = 0. As a shorthand, we usually write g(z) = g(a) + ¢'(a)(x — a) + o(x — a),
where o(x — a) is a term that is dominated by z — a in the limit.

2However we still do not know what 1 is, so how can this result be useful? Well, in the
framework of Hypothesis Testing which we will talk about later, if we conjecture that u = pg, then
we would know the entire sampling distribution of X, and see whether our realized sample mean
is consistent with that sampling distribution.
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If we substitute x with X and a with u = E[X}],
(4) 9(X) = g(n) + g' (W) (X — p) + o(X — p)

In the limit as n — oo, we can show that /n - o(X — u) — 0. Therefore for large n,
we have:

(5) Vn(g(X) —g(p) = ¢ (m)vVn(X — p)

Since v/n(X —p) — N( 0?), by Slutsky’s theorem, g’ (j1)+/n(X — ) 4 N(0, ' (p)*a?).
It follows that \/n(g(X ) g(1)) % N(0, ¢'(11)20?). Therefore, the asymptotic ap-
proximation of g(X) is

) o) 2 N (960, L)

Delta Method. Let Y, be a sequence of random variances that satisfies v/n(Y;, —
6) — N(0,0?) in distribution. For a given function g such that ¢'(6) exists and is
not 0. Then,

(7) Vilg(Ys) — g(8)) % N(0,0%¢'(0)?)

4.1. Example

For example, suppose X1, ..., X, are iid Bernoulli(p). Then E[X;] = p = . There-
fore the sample mean X is a consistent and unbiased estimator of p. The variance
is Var(X;) = p(1 — p).

Consider the random variable X (1—X). This is of interest because it is a (consistent)
estimator for the variance of the Bernoulli distribution. We know this by applying
the continuous mapping theorem. In fact, the sample variance can be expressed
as §% = %=X (1 — X) for the Bernoulli dlstrlbutlon Let g(z) = (1 — z), then

g (x) = 1= 23:
First note that E[X;] = p and Var(X;) = p(1 — p), by CLT:

(8) V(X —p) & N(0,p(1 = p)) as n — oo

By the Delta method, we can derive the sampling distribution of X(1 — X) as
n — oo.
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FIGURE 1. p(1 — p)(1 — 2p)? as a function of p

(9) Vi(g(X) = g(p)) % N(0,p(1 — p)g'(p)?)
(10) Vi (X(1=X) = p(1 —p)) L N (0,p(1 — p)(1 - 2p)?)

n

Therefore the asymptotic distribution of X (1—X)is X (1-X) ~ N <p(1 - D), M) :

The asymptotic variance of X (1 — X) is ’w. The asymptotic variance of
X (1—X) is highest around p = 0.25 and p = 0.75, see Figure 1. Although X (1—X) is
a consistent estimator for the variance of the Bernoulli random variable, the precision
of this estimator varies. It is least precise around p = 0.25 and p = 0.75.

4.2. Another example

Suppose now we are interested in ﬁ. This quantity is called the odds ratio. By
the Continuous Mapping Theorem, a natural (consistent) estimator for ﬁ would
be %

Use Delta Method to obtain the asymptotic distribution of % From CLT:

\/ﬁ()_(—p)ﬁj\/’(o,p(l—p)) as n — 0o

Now let g(x) = %= = == — 1. Compute ¢'(z) = —ﬁ.

(11) Vi(g(X) = g(p) % N(0,p(1 = p)g(p)?)
X p \ 4 p

12) \/ﬁ(l—)?_l—p)_)N(O’(l—p)?’)
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Therefore, the asymptotic distribution of % is % ~N <ﬁ, W)'

4.3. Second-order Delta method
What is the asymptotic distribution of X?, without assuming Normality?
V(X —p) =4 N(0,0%)  from CLT
Vn(X? - p?) =4 N(0, (2p)%0?)  from Delta Method
Hence, X? ~ N(u?, #) However, what if © = 0?7 The asymptotic variance

can’t be zero! Delta method fails here because ¢'(1) = 0. We would need to use
second-order Delta Method.

Delta method requires that ¢'(u) # 0, which fails in some cases. Consider the
second-order Taylor expansion of the function g(z) about u:

9" () (X — p)?
9

(13) 9(X) = g(1) + 4" (W)(X — p) + +R(X, p)

Where the remainder term R(X,u) — 0 as X — pu, and does so at a rate faster
than (X — p)?. When ¢'(u) = 0, we have:

9" (W)X = p)?

(14) 9(X) —g(p) = 5

when 7 is large. Since (X — p)/o % N(0,1), we have n(X — p)2/o> % x2 by
the Continuous Mapping Theorem. Hence,

(15) n(g(X) — g(u)) & 1

Ezxample:

Going back to our example that finding the asymptotic distribution of X2 when
p=0,

Vn(X —0) =4 N(0,6%) from CLT

nX? —40°x; from second-order Delta Method
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Now x? is equivalent to the Gamma distribution with shape parameter %, and a

scale parameter of 2. That is, x? = Gamma(%,2). Moreover, ¢ x Gamma(,2) =

27 29
Gammal(3, 2¢) for a constant c¢. Therefore,

2

- o

X? —X% asymptotic approximation
n

_ 1 202
X? ~ Gamma (—, i)
2 n

When p # 0, the asymptotic distribution is X? ~ N (2, #), and X? converges
to p? at a rate of \/n. However, if u = 0, then X2 ~ %fo, and X? converges much

faster to 42, at a rate of n. For example, if we consider v/nX? when p = 0, then
v/nX? would converge to zero in probability.

4.4. Multivariate Delta method

Given a sequence of random vectors 0, if we have:
Vi(6, — 8) 5 N (0, V)

where % denotes convergence in distribution, A'(0, V) is a multivariate normal
distribution with mean vector 0 and variance-covariance matrix V', and 0 is a
p-vector of parameters, the multivariate Delta Method states that for a function
g : R? — RY that is continuously differentiable at 8, the following asymptotic dis-
tribution holds:
V(g(6,) — 9(8)) % N(0,J,V )

where Jj is the Jacobian matrix of g evaluated at @, which is a ¢ X p matrix where
the element in the ith row and jth column is

[Jg]ij = a%ze(j@)

Note that when p = g = 1, this reduces to the univariate Delta Method.
4.5. Side remark

Delta method underlies computation of standard errors in many statistical pack-
ages. See: https://cran.r-project.org/web/packages/modmarg/vignettes/
delta-method.html

Later on, we will see that the sampling distribution of coefficients from regressions
has a Normal distribution too. In many cases, we are interested in functions of
the coefficients. For example, in Probit regression, P(y = 1) = ®(a + bx). The
estimated coefficients (a, b) has a Normal sampling distribution, but by itself, b has
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no meaningful interpretation. Of interest is the marginal effect: dP(y = 1)/dz =
bp(a+bx). Delta method allows us to compute the standard error of dP(y = 1)/dx =
bo(a + br) via asymptotic approximation, which is faster and more accurate than
bootstrapping.
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