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Let X be a random variable distributed with the cdf FX . Suppose g(·) is some
function, what is the distribution of Y = g(X)?

In many settings, we want to know the behavior of functions of random variables.
Any function of a random variable is also a random variable. Transformations of
random variables are important. For example, if X ∼ N(0, 1) is the standard
Gaussian random variable, then Y = X2 has a chi-squared distribution, which is an
important class of distributions used in hypothesis testing. Furthermore, if Y = eX ,
then Y has a log-normal distribution, which is used to model variables that take
positive real values, such as income, asset prices, etc.

1. Transformation of Continuous Random Variables

Let Y = g(X), FY denotes the cdf of Y and FX denotes the cdf of X. From the
definition of the cdf of Y :

FY (y) = PY (Y ≤ y)

= PY (g(X) ≤ y)

= PX(X ≤ g−1(y)) assuming g is a strictly increasing, continuous function

= FX(g−1(y))

Therefore, we have expressed the cdf of Y in terms of FX(x), which is known.

Examples:

1.) X ∼ U [−1, 1] and Y = exp(X).

That is:

fX(x) =

{
1
2
, if x ∈ [−1, 1]

0, otherwise
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FX(x) =


0, if x < −1
1
2

+ 1
2
x, if x ∈ [−1, 1]

1, if x ≥ 1

Therefore

FY (y) = P (Y ≤ y)

= P (exp(X) ≤ y)

= P (X ≤ log y)

= FX(log y)

FX(log y) =


0, if log y < −1
1
2

+ 1
2

log y, if log y ∈ [−1, 1]

1, if log y ≥ 1

As such, the cdf of Y is,

FY (y) =


0, if y < 1

e
1
2

+ 1
2

log y, if y ∈ [1
e
, e]

1, if y ≥ e

The pdf of Y is fY (y) = dFY (y)
dy

= 1
2y

for y ∈ [1
e
, e], and fY (y) = 0 for y /∈ [1

e
, e].

2.) X ∼ U [−1, 1] and Y = X2.

FY (y) = P (Y ≤ y)

= P (X2 ≤ y)

= P (−√y ≤ X ≤ √y) for y ≥ 0

=

∫ √y
−√y

fX(x) dx

=

{
1 for y ≥ 1
√
y for y ∈ (0, 1]
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If y < 0, then FY (y) = P (X2 ≤ y) = 0.

2. A general formula for the transformation of random variables

We now derive a general formula for the transformation of a continuous random
variable X, when the transformation function is a continuous monotonic function.
A function is monotone strictly increasing if u > v =⇒ g(u) > g(v), and a function
is monotone strictly decreasing if u > v =⇒ g(u) < g(v).

Let X be the random variable with the support X . The support1 of X is the region
where the pdf of X is positive; outside of the support, the pdf is zero. Now let
Y = g(X), where g is monotone over X .

If the transformation is strictly monotone, then there is a bijection (one-to-one and
onto)2 between X and Y , where Y is the support of Y , i.e. Y = {y ∈ R : y =
g(x) for some x ∈ X} (the image of the function g). As such, g−1(y) = {x ∈
X : y = g(x)} exists, and it is a single-valued monotone function. The inverse is
increasing if g is increasing, and the inverse is decreasing if g is decreasing.

Hence, if g(x) is a strictly increasing function, then:

FY (y) = PY (Y ≤ y)

= PX(g(X) ≤ y)

=

∫
{x∈X :g(x)≤y}

fX(x)dx

=

∫
{x∈X :x≤g−1(y)}

fX(x)dx = PX(X ≤ g−1(y))

=

∫ g−1(y)

−∞
fX(x)dx

= FX(g−1(y))

The pdf is:

1The support is also the sample space
2One-to-one (injective): for all x, x′ ∈ X , g(x) = g(x′) =⇒ x = x′. Onto (surjective): for

each y ∈ Y, there is an x ∈ X such that g(x) = y.
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fY (y) =
dFY (y)

dy

=
dg−1(y)

dy

dFX(g−1(y))

dx
by the chain rule

=
dg−1(y)

dy
fX(g−1(y))

If g(x) is a (strictly) decreasing function, then

FY (y) = PY (Y ≤ y)

=

∫
{x∈X :g(x)≤y}

fX(x)dx

=

∫
{x∈X :x≥g−1(y)}

fX(x)dx

=

∫ ∞
g−1(y)

fX(x)dx

= 1− FX(g−1(y))

fY (y) = −dg
−1(y)

dy
fX(g−1(y))

Moreover, dg−1(y)
dy

has a negative sign when g is decreasing, and dg−1(y)
dy

has a positive

sign when g is increasing. Therefore we can succinctly rewrite the pdf of Y = g(X)
as:

fY (y) =

∣∣∣∣dg−1(y)

dy

∣∣∣∣fX(g−1(y)), for y ∈ Y

Example:

Suppose X ∼ U [0, 1], then FX(x) = x for 0 < x < 1, and fX(x) = 1 for 0 < x < 1
(remember to specify the pdf and cdf completely, which is not done here). Further
suppose that Y = g(X) = − log(X). Check that g(x) is a monotone decreasing
function over 0 < x < 1 (whose derivative is − 1

x
< 0). As such, when the domain is

restricted to (0, 1), the inverse of g exists and it is given by g−1(y) = e−y.
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But what is the support (sample space) of Y ? The function g maps (0, 1) bijectively
to (0,∞). Therefore, the pdf of Y is:

fY (y) =

{
0 if y ≤ 0

e−y if y > 0

The cdf of Y is:

FY (y) =

{
0, if y ≤ 0

1− FX(g−1(y)) = 1− e−y, if y > 0

2.1. Probability integral transformation

Let X have continuous cdf FX(x) and define Y = FX(X). Then Y is uniformly
distributed on (0, 1), that is, P (Y ≤ y) = y for 0 < y < 1.

P (Y ≤ y) = P (FX(X) ≤ y)

= P (X ≤ F−1X (y)) since FX is increasing

= FX(F−1X (y))

= y

Similarly, let Y be uniformly distributed on (0, 1), and let Z = F−1X (Y ). Then Z
has the cdf:

P (Z ≤ z) = P (F−1X (Y ) ≤ z)

= PY (Y ≤ FX(z)) since F−1X is increasing

= FX(z)

Z and X are identically distributed and have the same cdf. This result is important,
as it allows us to generate random samples from any probability distribution. Sup-
pose we want to draw a random sample x from a population with cdf FX . First, we
draw a uniform random number u between 0 and 1, then apply the transformation
F−1X (u).

Example:

Suppose we want to draw random samples (x1, . . . , xn) from the exponential dis-
tribution FX(x) = 1 − exp(−x). First we draw (u1, . . . , un) from U [0, 1]. Then let
xi = F−1X (ui) = log( 1

1−ui ).
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An example using R: see web appendix.

An example using Python: see web appendix.

3. Expectation

The expected value, or mean, of a random variable g(X) is:

E[g(X)] =

{∫∞
−∞ g(x)fX(x)dx if X is continuous∑
x∈X g(x)P (X = x) if X is discrete

As such, expectation is the average of the values of the random variable, weighted
by the probability distribution. Expected value is a commonly used measure of
“central tendency” of a random variable X. Expectation is the population average,
which is distinct from the concept of sample average.

Properties of the expectation operator:

1.) Expectation is a linear operator: E[ag1(X) + bg2(X) + c] = aE[g1(X)] +
bE[g2(X)] + c.

2.) If g1(x) ≥ 0 for all x ∈ X , then E[g1(X)] ≥ 0.

3.) If g1(x) ≥ g2(x) for all x ∈ X , then E[g1(X)] ≥ E[g2(X)].

Example:

If X has a binomial distribution Bin(n, p) where n and p are parameters, its pmf is
given by

P (X = x) =

(
n

x

)
px(1− p)n−x, for x = 0, 1, . . . , n

1.) The binomial distribution is the discrete probability distribution of the number
of successes in a sequence of n independent trials with binary outcomes, and where
the probability of success in each trial is p.
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E[X] =
n∑
x=1

x

(
n

x

)
px(1− p)n−x

=
n∑
x=1

n

(
n− 1

x− 1

)
px(1− p)n−x

=
n−1∑
y=0

n

(
n− 1

y

)
py+1(1− p)n−(y+1) , substitute y = x− 1

= np
n−1∑
y=0

(
n− 1

y

)
py(1− p)n−1−y

= np

Since
∑n−1

y=0

(
n−1
y

)
py(1−p)n−1−y is the sum over all possible values of a binomial pmf

with parameters (n− 1) and p.

Example:

Suppose X is Exponentially distributed with the parameter λ and has the pdf
fX(x) = λe−λx for x ≥ 0. What is E[X]?

E[X] =

∫ ∞
0

xλe−λxdx

=
[
−xe−λx

]∞
0
−
∫ ∞
0

−e−λxdx

= 0 +

∫ ∞
0

e−λxdx

=

[
−1

λ
e−λx

]∞
0

=
1

λ

4. Other central-tendency measures

The expected value of a random variable may not exist. A well-known example
is the Cauchy distribution. However other central-tendency measures such as the
median and the mode are well-defined in the case of the Cauchy distribution.

The Cauchy distribution has the pdf f(x) = 1
π(1+x2)

.
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E[X] =

∫ ∞
−∞

xf(x)dx

= lim
u→∞

lim
l→−∞

∫ u

l

xf(x)dx

= lim
l→−∞

lim
u→∞

∫ u

l

xf(x)dx for a well-defined integral

For the Cauchy distribution, it can be shown that3:

lim
u→∞

lim
l→−∞

∫ u

l

x

π(1 + x2)
= lim

u→∞
lim
l→−∞

log(1 + u2)

2π
− log(1 + l2)

2π
= −∞

lim
l→−∞

lim
u→∞

∫ u

l

x

π(1 + x2)
= lim

l→−∞
lim
u→∞

log(1 + u2)

2π
− log(1 + l2)

2π
=∞

-5 5

0.1

0.2

0.3

0.4

Figure 1. Cauchy distribution vs Normal distribution

The Cauchy distribution has fatter tail than the Normal distribution. Consider
another intuition for why the mean of the Cauchy distribution is undefined. For
X that is distributed as Cauchy, E[X] =

∫ 0

−∞ xf(x)dx +
∫∞
0
xf(x)dx = −∞ +∞,

which is undefined.

3Note that
∫∞
−∞ g(x)dx 6= limt→∞

∫ t
−t g(x)dx. Indeed for an odd function g(x), we always

have limt→∞
∫ t
−t g(x)dx = 0. Therefore, limt→∞

∫ t
−t

x
π(1+x2)dx = 0. The Cauchy principal value is

defined as limt→∞
∫ t
−t g(x)dx, for a function g even when

∫∞
−∞ g(x)dx is undefined.

8



MECO 7312 Lecture 2: Transformation of Random Variables

4.1. Median

The median of the random variable X is median(X) := m such that FX(m) = 0.5.
That is, the median is the value such that

∫ m
−∞ fX(x)dx = 0.5. It is robust to outliers,

and has a nice invariance property: for Y = g(X) and g monotonic increasing, then
med(Y ) = g(med(X)).

Example 1:

Suppose X ∼ Exp(λ) and has the pdf fX(x) = λe−λx for x > 0. What is the median
of X?

0.5 =

∫ m

0

λe−λxdx

0.5 =
[
−e−λx

]m
0

0.5 = 1− e−λm

m =
1

λ
log(2)

Example 2:

What about the mean and median of Y = log(X), where X has the pdf e−x?

E[Y ] =

∫ ∞
0

log(x)e−xdx

= −Euler’s constant

≈ −0.577216

The median of Y is log log 2.

In general, when X has the pdf fX(x) = λe−λx, we have E[log(X)] = −γ − log(λ).
Show that the median of Y is log(log(2))− log(λ).

4.2. Mode

The mode of X is Mode(X) = argmaxx fX(x). That is, the mode is the peak of the
pdf of X.

Suppose X has the pdf fX(x) = λe−λx. The mode of X is argmaxx≥0 λe
−λx =

0.

In some cases, we need to compute the first-order condition and then check the
second-order condition. For more complicated functions, we can find the solution
numerically.
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5. Higher moments

For each integer n, the n-th moment of X is defined as E[Xn].

The n-th centered moment of X is E[(X − E[X])n].

The mean E[X] is the first moment of X, and the variance is the second centered
moment of X.

The variance of the random variable X is defined as Var(X) = E[(X−E[X])2]. The
positive square root of Var(X) is the standard deviation of X.

Properties of the variance:

1.) Var(aX + b) = a2Var(X). Variance is not a linear operator. Moreover, variance
measures the spread of a distribution around its mean, and so it is unaffected when
a constant is added to the X.

2.) Var(X) = E[X2]− E[X]2 (alternative formula for the variance)

Example 1:

Suppose X has the pdf fX(x) = λe−λx. What is the variance of X?

E[X2] =

∫ ∞
0

x2λe−λxdx

=
[
−x2e−λx

]∞
0
−
∫ ∞
0

−2xe−λxdx

= 0 +

∫ ∞
0

2xe−λxdx

=
2

λ2

Therefore Var(X) = 2
λ2
− 1

λ2
= 1

λ2

Example 2:

Suppose X has the pdf fX(x) = λe−λx. What is the variance of Y = log(X)?

10



MECO 7312 Lecture 2: Transformation of Random Variables

E[Y 2] = E[log(X)2]

=

∫ ∞
0

log(x)2λe−λxdx

= γ2 +
π2

6
+ 2γ log(λ) + log(λ)2

=
π2

6
+ (γ + log(λ))2

Therefore Var(Y ) = π2

6
≈ 1.64493, which does not depend on λ.

What information does the third moment convey? Consider the third-centered
moment of a random variable, E[(X − E[X]3)].

Going back to our example. Let X ∼ Exp(λ).

E[(X − E[X])3] =

∫ ∞
0

(
x− 1

λ

)3

λe−λxdx

=
2

λ3

> 0

Now let Y = log(X), and consider the third-centered moment of Y .

E[(Y − E[Y ])3] =

∫ ∞
−∞

(y + γ + log(λ))3λeye−λe
y

dy

= −2ζ(3)

≈ −2.40411 < 0

Where ζ(s) is the Riemann-Zeta function. In particular, ζ(3) =
∑∞

n=1
1
n3 .

The third-centered moment conveys information about the skewness of a random
variable. A negative skewness value means the tail is on the left side of the dis-
tribution, and positive skewness indicates that the tail is on the right. Verify this
visually, using the fact that Y = logX has the pdf fY (y) = λey−λe

y
for y ∈ R.

A Normal distribution always has zero skewness regardless of where it is centered.
That is, X ∼ N (µ, σ2) has a skewness of zero regardless of the parameters µ and σ.
In fact, any other symmetric distribution with finite third moment has a skewness
of 0.
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In order for the third-centered moment to be comparable across different scales of
random variables, skewness is defined as the third standardized moment. Going
back to our examples:

E

(X − E[X]√
Var(X)

)3
 =

1

Var(X)3/2
E[(X − E[X])3]

= λ3
2

λ3

= 2

E

(Y − E[Y ]√
Var(Y )

)3
 =

−2ζ(3)

(π
2

6
)3/2

≈ −1.13955

Which does not depend on λ. Again, we emphasize that these are the population
moments (population variance, population skewness, etc). These are theoretical
values – true values associated with a random variable. Later, we will talk about
sample moments: such as the more familiar concepts of calculating sample mean,
sample variance, sample skewness, etc.

6. Moments Generating Function

The moments of a random variable are summarized in the moment generating
function (mgf). Definition: the moment-generating function of X is MX(t) ≡
E[exp(tX)], provided that the expectation exists in some neighborhood t ∈ [−h, h]
of zero.

Specifically,

MX(t) =

{∫∞
−∞ e

txfX(x)dx, for X continuous∑
x∈X e

txP (X = x), for X discrete

The mgf has the property that

E[Xn] =
dn

dtn
MX(t)

∣∣∣∣∣
t=0
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That is, the n-th derivative of the MGF evaluated at t = 0 gives the n-th mo-

ment of the corresponding random variable. Another notation for dn

dtn
MX(t)

∣∣∣
t=0

is

M
(n)
X (0).

When it exists, then mgf provides alternative description of a probability distribu-
tion. Mathematically, it is a Laplace transform, which can be convenient for certain
mathematical calculations.

Example:

Let X be the standard Normal distribution. As such fX(x) = 1√
2π
e−

x2

2 .

MX(t) = E[etX ]

=

∫ ∞
−∞

etx
1√
2π
e−

x2

2 dx

=

∫ ∞
−∞

1√
2π
e
−x2+2tx

2 dx

=

∫ ∞
−∞

1√
2π
e
−(x−t)2+t2

2 dx

= e
t2

2

∫ ∞
−∞

1√
2π
e−

(x−t)2

2 dx

= e
t2

2

First moment of X is M (1)(0) = te
t2

2

∣∣
t=0

= 0.

The second moment of X is M (2)(0) = d
dt
te

t2

2

∣∣∣
t=0

=
(
e

t2

2 + t(te
t2

2 )
)∣∣∣

t=0
= 1.

The third moment of X is M (3)(0) =
(
te

t2

2 + 2te
t2

2 + t3e
t2

2

)∣∣∣
t=0

= 0.

Moment generating function will be useful later when we talk about the central limit
theorem. Moreover, mgf has the nice property that:

Let S =
∑n

i=1 aiXi, where Xi are independent random variables. The mgf for S is
given by MS(t) = MX1(a1t)×MX2(a2t)× · · · ×MXn(ant).

To see the intuition behind mgf, consider the Taylor series expansion of etx around
t = 0
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g(t) = g(0) +
1

1!
tg(1)(0) +

1

2!
t2g(2)(0) + . . .

etx = 1 +
1

1!
tx+

1

2!
t2x2 +

1

3!
t3x3 + . . .

E[etX ] = 1 + tE[X] +
1

2!
t2 E[X2] +

1

3!
t3 E[X3] + . . .

Hence the first-derivative of E[etX ] with respect to t evaluated at t = 0 is E[X], the
second-derivative of E[etX ] w.r.t t evaluated at t = 0 is E[X2], and so on.

A. Appendix

A.1. Piecewise monotonic transformation

What if the function g is not monotone over the sample space X ? By Theorem 2.1.8
in Casella-Berger, we can partition X into A0, A1, . . . , Ak such that the function g is
monotone over each A1, . . . , Ak. Then we can just apply the previous transformation
formula separately over these sets, and then summing up the individual pdfs to
obtain the overall pdf.

Let X has the pdf fX(x). Let the transformation be Y = g(X). Let A0, A1, . . . , Ak
be a partition of the support of X. Further, let g1, . . . , gk be monotone functions
such that g(x) = gi(x) for x ∈ Ai. That is, gi is the function g whose domain is
restricted to the set Ai.

A0 is an “exception” set PX(X ∈ A0) = 0, which can be ignored. We also assume
that the pdf fX(x) is a continuous function on each Ai. Further, the functions gi
have identical range, in the sense that Y = {y : y = gi(x),∃x ∈ Ai} is the same for
each i. In another words, each gi is a one-to-one transformation from Ai onto Y .
Finally, g−1i (y) has continuous derivative on Y .

The pdf of Y = g(X) is:

fY (y) =

{∑k
i=1 fX(g−1i (y))

∣∣∣dg−1
i (y)

dy

∣∣∣, for y ∈ Y
0, otherwise

Example:

Let X have the standard Normal distribution. fX(x) = 1√
2π
e
−x2

2 for x ∈ (−∞,∞).

Consider Y = X2. The function g(x) = x2 is monotone on (−∞, 0) and on
(0,∞).
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Let A0 = {0}, A1 = (−∞, 0), A2 = (0,∞). Let g1(x) = x2 for x < 0, and g2(x) = x2

for x > 0. The respective inverses are: g−11 (y) = −√y for y > 0, and g−12 (y) =
√
y

for y > 0. Thus the pdf of Y is:

fY (y) =
1√
2π
e
−(−√y)2

2

∣∣∣− 1

2
√
y

∣∣∣+
1√
2π
e
−(
√
y)2

2

∣∣∣ 1

2
√
y

∣∣∣
=

1√
2π

1
√
y
e
−y
2 for y ∈ (0,∞)

Y is a chi-squared random variable with 1 degree of freedom. We check that all the

technical conditions are satisfied. P (X = 0) = 0.
dg−1

1 (y)

dy
= − 1

2
√
y

is continuous for

y > 0. Finally, each gi is a one-to-one function from Ai onto Y = {y ∈ R : y >
0}.

The inverse function theorem can be helpful in deriving dg−1(y)
dy

. It says that if g(x)

is a continuously differentiable function with nonzero derivative at the point x =
g−1(y), then g is invertible in a neighborhood of g−1(y), the inverse is continuously
differentiable, and the derivative of the inverse function at y is the reciprocal of the
derivative of g at g−1(y):

dg−1(y)

dy
=

1

g′(x)

∣∣∣∣
x=g−1(y)

A.2. Transformation of Discrete Random Variables

Let X be a discrete random variable, then X , the sample space of X, is countable.
Let the pmf of X be fX , the sample space (or support) is X = {x ∈ R : fX(x) >
0}.

The sample space for Y = g(X) is Y = {y ∈ R : y = g(x), x ∈ X}, which is also a
countable set. Thus, Y is also a discrete random variable. The pmf for Y is:
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fY (y) = PY (Y = y)

= PX(g(X) = y)

= PX({x ∈ X : g(x) = y})

=
∑

x∈X :g(x)=y

PX(X = x)

=
∑

x∈X :g(x)=y

fX(x)
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