LECTURE 3: MULTIVARIATE RANDOM VARIABLES

MECO 7312.
INSTRUCTOR: DR. KHAI CHIONG
SEPTEMBER 10, 2025

Previously, we looked at univariate random variables, that is, the variable of interest
is a scalar. Most of the time however, we are interested in the behavior of a vector.
For instance, the behavior of (i) quantities and prices, (ii) employment and GDP,
(iii) customer shopping frequency and spending, (iv) temperature and rainfall, (v)
prices of multiple assets etc.

An n-dimensional random vector is a function from a sample space €2 into R", the
n-dimensional Euclidean space.

1. Pdf and pmf of bivariate random variables

1.1. Discrete case

Consider the experiment of tossing two fair dice. The sample space of this experi-
ment is the set of all the possible outcomes, 2 = {(1,1),(1,2),...,(2,1),... }, where
12| = 36.

Define X := sum of the two dice, Y := |difference of the two dice|. In this way, we
have defined the bivariate random vector (X,Y").

1.) What is P(X =6,Y = 0)? The event X = 6 and Y = 0 occurs if and only if
the two dice are 3. Hence, P(X =6,Y =0) = 5.

2.) How about P(X =8,Y = 2)?

3.) How about P(X =7,Y <4)?
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First die, second die 1 2 3 4 5 6
1 (2,0) (3,1) (42) (5,3) (6,4) (7,5)
2 (3,1) (4,0) (5,1) (6,2) (7,3) (8,4)
3 4,2) (5,1) (6,0) (7,1) (8,2) (9,3)
4 (5,3) (6,2) (7,1) (8,0) (9,1) (10,2)
5 (6,4) (7,3) (8,2) (9,1) (10,0) (11,1)
6 (7,5) (8,4) (9,3) (10,2) (11,1) (12,0)

TABLE 1. All possible outcomes of (X,Y’). Each of the realization
per cell is equally likely.

Let (X,Y) be a discrete bivariate random vector. Then the function f(z,y) from
R? to R defined by f(z,y) = P(X = z,Y = y) is called the joint probability mass
function of (X,Y’). The notation fxy(z,y) will also be used.

1.1.1. Marginal pmf

Given the joint pmf fxy(z,y), the marginal pmf of X denoted by fx(z) is given
by:

fx(@) =" fxy(z,y)

yEeR

Similarly, the marginal pmf of Y denoted by fy(y) is given by:

@)= fxy(zy)

zeR

Consider the dice experiment above, what is fx(3) = P(X = 3)?

fx(8) =D FxrBy) =D P(X =3Y =y) = P(X =3,Y = 1) = —

yER

1.2. Continuous case

A function f(z,y) from R? to R is called a joint probability density function or joint
pdf of the continuous bivariate random vector (X,Y) if for every A C R?:

PX,Y) € A) = / /A ey (z,y) de dy
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Any function f(z,y) satisfying f(z,y) > 0 for all (z,y) € R? and

= [ [ seadeay

is the joint pdf of some continuous bivariate random vector (X,Y).

Example: consider the following function.

6ry? 0<zx<l,and0<y<1
flx,y) = .
0 otherwise

The support of (X,Y) is the unit square. We check that P((X,Y) € R?) = 1.

/ / fxyd:tdy—/ / 62y dx dy
—/3y dy
0

=1

What is P((X,Y) € A), where A is the region defined by A = {(z,y) € R? : x <
1 1

We can visualize the joint pdf using Mathematica. We will see that geometric
intuitions can be useful sometimes — we interpret P((X,Y) € A) as the volume
underneath the curve f(z,y) with respect to the region A.
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Example: consider again the pdf f(x,y) = 6zy? with the support on the unit
square. What is P(X +Y > 1)?

Let A be the region in 2-dimensional Euclidean space such that A = {(z,y) € R*:
r+y>10<2z<1,0<y < 1} Essentially we are asking P((X,Y) € A).
Graphically, A is the upper-right triangle of the unit square.

A={(z,y) eR*:1<z+y,0<z<1,0<y<1}
={(z,y) eR*:1-y<az<1l0<y<l1}

Therefore,

1 1
P(X—i—YZl)://f(a:,y)dxdy:// 6zy* dx dy
A 0 Jl-y
1
= [t dy

0

1
= / 3y —3(1 —y)*y’ dy
0

I3 4 35]1
—[2y 57 1o
_9
10

Example: consider the following function.

1 0<z<1l,and0<y<1
flz,y) = .
0 otherwise

This volume of this pdf is just the unit cube. Calculate P(X? + Y? < 1). First,
we show using brute-force algebra that P(X? +Y? < 1) = 7> then we use a simple
geometric argument that P(X? +Y? <1) = Z.

P(X?+Y?<1)equalsto P((X,Y) € A) where A = {(z,y) e R?: 22 +¢y* < 1,z €
[0,1],y € [0,1]}.
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P(X2+Y2§1)://Af(x,y)dxdy

1 \1—y2
= / / ldzx dy
o Jo

1
:/ V1—y2dy
0

- VT )],

™

4

However, because the pdf has a uniform height of one with the support on the unit
square, P(X? +Y? < 1) is just the volume of a cylinder split into 4 equal parts.
Specifically, this cylinder has a height of one, and a radius of one.

1.2.1. Marginal pdf
The marginal pdf of X is defined as:

fX(lU)I/_OO f(z,y)dy, forxzeR

The marginal pdf of Y is defined as:

fr(y) = /_00 flx,y)dx, foryeR

Example: consider again the pdf f(z,y) = 6xy* with the support on the unit
square.

Derive the marginal pdf of X. Then, calculate P(3 < X < 3).

1

1
fx(z) = / 6zy> dy = [23:y3}0 =2x, forx€|0,1]
0

P ! X 5 % d %Qd >
(§< <Z)—/% fx(m)x—/2 T

Jun
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2. Joint cdf
The joint cdf of (X,Y") is defined as:

Fxy(z,y)=P(X <2,Y <y)

When (X,Y) is a continuous random vector, then

F(z,y) :/_io/_;f(s,t)dsdt

From the fundamental theorem of calculus, this implies that

O*F(x,y)

f(r,y) = 900y

The marginal cdf Fx(z) can be obtained from lim, ,., F(x,y) = Fx(z).

Example: consider the cdf:

(0 xr<0ory<0

Ty 0<z<1,0<y<1

F(z,y) =< = 0<z<l,y>1
0<y<l,xz>1

L1 x>1ly>1

PF(zy) .

Therefore by calculating f(z,y) = T

0 otherwise
f(z,y) =
1 0<z<1,0<y<1

Also check that the marginal cdf Fy(x) can be obtained as:

0 x <0
Fx(x) = lim F(z,y) =<z 0<z<1
Y—00
1 x>1
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3. Expectation

Let g be a function from R? to R. For the discrete case,
Eg(X, V)= >  glzyPX =2 =y)
(z,y)€R?

For instance, with the dice experiment from before, we have,

Elg(X,Y)] = g(1,00P(X =1,Y =0)+g(L, )P(X =1,V = 1) + ...

For the continuous case, we have:

E[g(X,Y)]Z//( )GRQQ(x,y)fx,y(x,y)dwdy

Example:

Throw darts randomly at a unit square, record the z-coordinates and y-coordinates,
and multiply them together. On average, what value would you expect?

In another words, consider the pdf f(z,y) = 1 with the support on the unit square.
What is E[XY]?

E[XY] = /Z /O; vy f(x,y) dz dy

1 1

://xydxdy
0o Jo

—/1 f2dy =2

= oy y—4

What about E[X] or E[Y]? Calculate the marginals first.

Example: What if we don’t throw darts uniformly but try to aim away from
the origin? Consider again the pdf f(z,y) = 6xy? with the support on the unit
square.
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1 1
]E[XY]:/O /0 zy 6zy? dr dy
1

2y3 dy

MI)—‘O\

How would we calculate E[X?Y]?

1 1
E[X?Y] = / / 22y 62y dr dy = 3
o Jo 8

4. Conditional probabilities

Consider the bivariate random variables (X,Y"). The random variable Y conditional
on X = z is denoted by Y |X = z. Now, Y|X = x is another random variable , but
it is a scalar random variable. The density of Y| X = x is given by:

_ fxv(@y)
fY\X:x(y) = Fx()

Example:

Consider the random variables (X,Y’) that has the joint pdf f(z,y) = 6zy?* for
(z,y) € [0,1]?. Consider the random variable Y|X = 0.5. This random variable is
a scalar random variable. The pdf of Y| X = 0.5 is in terms of y only:

fY|X:0.5(y) =

Now consider Y| X, which is a bivariate random variable, unlike Y| X = z, which is
a scalar random variable. In particular, the joint density of Y| X is:

Ixy(z,y)

fY\X(y|x) = fX<x>
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The two pdfs look identical, except in the pdf of Y| X = x, we treat = as fixed and
as such, fy|x—,(y) is a one-dimensional function. On the other hand, the joint pdf
of Y| X is a function of both x and y, and as such it is two-dimensional. That is,
fY|X:x R — R, but fY|X :R? = R.

Example:

Consider again the bivariate random variable (X, Y’) that has the joint pdf f(z,y) =
6zy? for (z,y) € [0,1]%. The joint density of Y| X is given by:

fxy(@,y)
frix(ylz) = (@)
61>
B 2x
B 3y for0<x<1,0<y<1
o otherwise

Note: fy|x : R* — R is a function of both z and y, as the support of the function
explicitly depends on x.

Example: Consider the joint density f(z,y) = x+y, with support on (z,y) € [0, 1]°.
What is the joint density of Y| X7

First show that the marginal density of X is fx(z) = 3+, for z € [0,1]. Therefore
the conditional density is:

2(z+y) )
fyix(yle) = { 1+2z (x,y) € [0,1]

0 otherwise

4.1. Conditional expectation

Consider the random variable Y'|X = x. The expectation E[Y|X = z] is defined as
EY|X =] = [ yfyix=2(y) dy. Note that E[Y|X = z] is a constant. In general,
we have E[g(Y)|X = z] = [T g(y) fv|x=2(y) dy, for some function g.

Example: consider again the joint pdf f(z,y) = = + y with the support given by
{(z,y) e R?*:0 <z <1,0 <y <1}. From the previous derivation, the conditional

density is fy|x=f(y) = % for (z,y) € [0, 1]
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1
BIY(X =] = [ ufviccf(5)dy
0
L 2r+y
- [
0 + 2z
b ogy 29/
= d
/0 1+2m+1—|—2x Y
x . 2 243z
142z 3(1+2z) 3+6z

E[Y|X = z] is treated as a constant. We check that E[Y'|X = 0] = 2/3, E[Y|X =
1] = 5/9. E[Y|X = z] is decreasing in x, what is the geometric intuition behind
this?

Now let E[Y|X = z] = g(x). Then, we define E[X|Y] to be the random variable Z
obtained by the transformation Z = ¢(X). For this example, E[Y|X] is the random

variable defined by the transformation Z = gig§ We can then derive the pdf of

7 = E[Y|X]. In particular, the inverse of the transformation is g~'(z) = 2222, with
dg—1(z dg—1(z _ —32

gdz( : - _3(17122)2’ Therefore, fZ(Z) = ‘gT() fX<g 1(2)) = 3(1712;:)2 (% + 334362) for
e s,

Conditional expectation is important and useful later on. Suppose Y is an outcome
variable of interest, and X is a variable that can be used to predict Y. An excellent
predictor of Y as a function of X = z is E[Y|X = z]. This is optimal in a formal
way.! For instance, Y is the transaction price of a house in the neighborhood and X
is the square footage of the house. Then we can predict the price of a house when
the square footage is 1000 as E[Y|X = 1000].

5. Independence

If X ~ fx(z) and Y ~ fy(y) are independent, then the joint pdf of (X,Y) is:

fX,Y(iU,y) = fX(ﬂf)fY(y)

Furthermore, if a joint pdf fxy(x,y) can be factored as:

fxy(x,y) = g(x)h(y)

If your loss function is a mean-squared error. That is, let f(X) = E[Y|X], then f(X) mini-
mizes the mean-squared error E[(Y — h(X))?] among all possible functions h(X).

10
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Then X and Y are independent random variables.

Example: consider again the joint pdf f(x,y) = 6zy* with the support on the unit
square. Are X and Y independent? What about f(z,y) = 1 with the support on
the unit square?

Consider the pdf f(z,y) = 2 with support on the triangle {(z,y) € [0,1]*: x +y <
1}. Are X and Y independent?

6. Covariance and correlation

The covariance between X and Y is:

Cov(X,Y) = E[(X — E[X])(Y — E[Y])]

Remember E[XY] = [ [2yf(z,y) dzdy.
The correlation between X and Y is:

Cov(X,Y)

oY) = RO var )

Which is bounded between [—1, 1].

A useful result is:

Var(aX + bY) = a*Var(X) + b*Var(Y) + 2abCov(X,Y)

It is also easy to show that if a is a constant, then Cov(aX,Y) = aCov(X,Y)
and Cov(X,a) = 0. Further, Cov(X, X) = Var(X). Moreover, Cov(X + Z,Y) =
Cov(X,Y)+Cov(Z,Y), which implies that if a is a constant, then Cov(X +a,Y) =
Cov(X,Y).

Show that when X and Y are independent, then Cov(X,Y) = 0. However the
converse is not necessarily true! Zero covariance does not imply independence.
Covariance only measures a linear relationship between X and Y. For example,
consider a random variable X such that its first and third moments are zero. Now,
if Y = X2, then Cov(X,Y) = 0. This means that covariance cannot capture non-
linear relationship between random variables. Instead, it is a good idea to always
plot the scatterplot and inspect any non-linearity in the scatterplots.

Example:

11
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Consider the joint pdf f(z,y) = 6zy* with the support on the unit square. Re-
call that E[XY] = [)' [ zy6ay>drdy = L. Moreover, E[X] = 2 and E[Y] = 2.
Therefore, Cov(X,Y) = 0.

Similar calculations can be done for the discrete case:

EXY] =) ayP(X =z,Y =y)

yeY zeX

Finally, recall the joint pdf f(z,y) = x + y with the support on {(z,y) € R? : 0 <
r<1,0<y <1}

Previously, we found that the marginal density of Y is fy(y) = % 4y for y € [0,1].
Assuch, E[Y] =1 +3 =5

12°

E[XY] = /01 /Olcvyf(%w dx

1 1
://xy(x—i-y)dxdy
o Jo
1

3

Therefore the covariance between X and Y is —ﬁ. This number seems small,
because it has not been normalized with the scale of (X,Y’). We can also show that
Var(Y) = 11/144, and Var(X) = 11/144. Hence, the correlation between (X,Y) is
—ﬁ. Does this make geometric sense?

2Note that the pdf is symmetric in z and Y.
12
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